Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.64 trang 46 Sách bài tập (SBT) Toán Hình học 10

Cho tam giác đều ABC có O là trọng tâm và M là một điểm tùy ý trong tam giác.

Cho tam giác đều ABC có O là trọng tâm và M là một điểm tùy ý trong tam giác. Gọi D, E, F lần lượt là chân đường vuông góc hạ từ M đến BC, AC, AB. Chứng minh rằng:

\(\overrightarrow {MD}  + \overrightarrow {ME}  + \overrightarrow {MF}  = {2 \over 3}\overrightarrow {MO} \)

Gợi ý làm bài

(Xem hình 1.73)

Qua M kẻ các đường thẳng sau: \({K_1}{K_4}\)//AB, \({K_2}{K_5}\)//AC, \({K_3}{K_6}\)//BC

\({K_1},{K_2} \in BC;{K_3},{K_4} \in AC;{K_5},{K_6} \in AB\). Ta có:

\(\eqalign{
& \overrightarrow {MD} + \overrightarrow {ME} + \overrightarrow {MF} \cr
& = {1 \over 2}(\overrightarrow {M{K_1}} + \overrightarrow {M{K_2}} + \overrightarrow {M{K_3}} + \overrightarrow {M{K_4}} + \overrightarrow {M{K_5}} + \overrightarrow {M{K_6}} ) \cr} \)

\( = {1 \over 2}(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC} )\)

(Vì \(M{K_5}A{K_4},M{K_3}C{K_2},M{K_1}B{K_6}\) là các hình bình hành). Vậy

\(\overrightarrow {MD}  + \overrightarrow {ME}  + \overrightarrow {MF}  = {1 \over 2}.3\overrightarrow {MO}  = {3 \over 2}\overrightarrow {MO} \)

Sachbaitap.net

Xem lời giải SGK - Toán 10 - Xem ngay

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.

Xem thêm tại đây: Đề toán tổng hợp