Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 17 trang 198 Sách bài tập (SBT) Toán Hình học 10

Trong mặt phẳng tọa độ Oxy, cho hai đường tròn

Trong mặt phẳng tọa độ Oxy, cho hai đường tròn:

(C1) : \({\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} = 4\)

và (C2) : \({\left( {x - 5} \right)^2} + {\left( {y - 3} \right)^2} = 16\)

a) Chứng minh rằng hai đường tròn (C1) , (C2)  cắt nhau ;

b) Tìm tọa độ giao điểm của hai tiếp tuyến chung của (C1) và (C2).

Gợi ý làm bài

(Xem hình 3.40)

a) (C1) có tâm I(2 ; 2) và bán kính \({R_1} = 2\)

   (C2) có tâm J(5 ; 3) và bán kính \({R_2} = 4\)

Ta có:

\(IJ = \sqrt {{{\left( {5 - 2} \right)}^2} + {{\left( {3 - 2} \right)}^2}}  = \sqrt {10} .\)

Do: \({R_2} - {R_1} < IJ < {R_2} + {R_1}\)

Nên (C1)(C2) cắt nhau tại hai điểm phân biệt.

b) Gọi \(\Delta \) và \(\Delta' \) là hai tiếp tuyến chung của (C1)(C2) . \(\Delta \) tiếp xúc với (C1)(C2) lần lượt tại A, B. \(\Delta' \) tiếp xúc với (C1)(C2) lần lượt tại A', B'.

Ta có:

\(\left\{ \matrix{
d(I,\Delta ) = d(I,{\Delta'}) = {R_1} = 2 \hfill \cr
d(J,\Delta ) = d(J,{\Delta'}) = {R_2} = 4 \hfill \cr} \right. \Rightarrow IJ,\Delta \) và \(\Delta' \) đồng quy tại M.

\(\eqalign{
& {{JM} \over {IM}} = {{JB} \over {IA}} = {{{R_2}} \over {{R_1}}} = 2 \cr
& \Rightarrow \overrightarrow {JM} = 2\overrightarrow {JI} \cr
& \Rightarrow \left\{ \matrix{
{x_M} - 5 = 2.\left( {2 - 5} \right) \hfill \cr
{y_M} - 3 = 2.(2 - 3 \hfill \cr} \right. \cr
& \Rightarrow \left\{ \matrix{
{x_M} = - 1 \hfill \cr
{y_M} = 1. \hfill \cr} \right. \cr} \)

Vậy ta được M(-1 ; 1).

Sachbaitap.net

Xem lời giải SGK - Toán 10 - Xem ngay

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.

Xem thêm tại đây: I-Đề toán tổng hợp