Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 2.14 trang 91 Sách bài tập (SBT) Toán Hình học 10

Áp dụng tính chất giao hoán và tính chất phân phối của tích vô hướng hãy chứng minh các kết quả sau đây:

Áp dụng tính chất giao hoán và tính chất phân phối của tích vô hướng hãy chứng minh các kết quả sau đây:

\({(\overrightarrow a  + \overrightarrow b )^2} = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + 2\overrightarrow a .\overrightarrow b \)

\({(\overrightarrow a  - \overrightarrow b )^2} = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} - 2\overrightarrow a .\overrightarrow b \)

\((\overrightarrow a  + \overrightarrow b )(\overrightarrow a  - \overrightarrow b ) = {\left| {\overrightarrow a } \right|^2} - {\left| {\overrightarrow b } \right|^2}\)

Gợi ý làm bài

\(\eqalign{
& {(\overrightarrow a + \overrightarrow b )^2} = (\overrightarrow a + \overrightarrow b ).(\overrightarrow a + \overrightarrow b ) \cr
& = \overrightarrow a .\overrightarrow a + \overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow a + \overrightarrow b .\overrightarrow b \cr} \)

\(= {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + 2\overrightarrow a .\overrightarrow b \)

Các tính chất còn lại được chứng minh tương tự.

Sachbaitap.net

Xem lời giải SGK - Toán 10 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.