Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 2.18 trang 92 Sách bài tập (SBT) Toán Hình học 10

Cho tam giác ABC cân (AB = AC).

Cho tam giác ABC cân (AB = AC). Gọi H là trung điểm của cạnh BC, D là hình chiếu vuông góc của H trên cạnh AC, M là trung điểm của đoạn HD. Chứng minh rằng AM vuông góc với BD.

Gợi ý làm bài

(h.2.22) 

Ta cần chứng minh \(\overrightarrow {AM} .\overrightarrow {BD}  = 0\)

Tac có: \(2\overrightarrow {AM}  = \overrightarrow {AH}  + \overrightarrow {AD} \) vì M là trung điểm của đoạn HD.

\(\overrightarrow {BD}  = \overrightarrow {BH}  + \overrightarrow {HD} \)

Do đó:

\(2\overrightarrow {AM} .\overrightarrow {BD}  = (\overrightarrow {AH}  + \overrightarrow {AD} ).(\overrightarrow {BH}  + \overrightarrow {HD} )\)

\(= \underbrace {\overrightarrow {AH} .\overrightarrow {BH} }_{ = 0} + \overrightarrow {AH} .\overrightarrow {HD}  + \overrightarrow {AD} .\overrightarrow {BH}  + \underbrace {\overrightarrow {AD} .\overrightarrow {HD} }_{ = 0}\)

\( =  > \,2\overrightarrow {AM} .\overrightarrow {BD}  = \overrightarrow {AH} .\overrightarrow {HD}  + \overrightarrow {AD} .\overrightarrow {BH} \)

\( = (\overrightarrow {AH} .\overrightarrow {HD}  + (\overrightarrow {AH}  + \overrightarrow {HD} ).\overrightarrow {BH} \)

\( = \overrightarrow {AH} .\overrightarrow {HD}  + \underbrace {\overrightarrow {AH} .\overrightarrow {BH} }_{ = 0} + \overrightarrow {HD} .\overrightarrow {BH} \)

\( = \overrightarrow {HD} .(\underbrace {\overrightarrow {AH} +\overrightarrow {BH} }_{\overrightarrow {AC} }) = \overrightarrow {HD} .\overrightarrow {AC}  = 0\)

Vậy AM vuông góc với BD.

Sachbaitap.net

Xem lời giải SGK - Toán 10 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.