Bài 2.19 trang 74 Sách bài tập (SBT) Hình học 11Cho hình chóp S.ABCD có đáy là hình thang ABCD, đáy lớn là AD và AD = 2BC. Gọi O là giao điểm của AC và BD, G là trọng tâm của tam giác SCD. Cho hình chóp S.ABCD có đáy là hình thang ABCD, đáy lớn là AD và AD = 2BC. Gọi O là giao điểm của AC và BD, G là trọng tâm của tam giác SCD. a) Chứng minh rằng \(OG\parallel \left( {SBC} \right)\) b) Cho M là trung điểm của SD. Chứng minh rằng \(CM\parallel \left( {SAB} \right)\). c) Giả sử điểm I nằm trong đoạn SC sao cho \(S{\rm{C = }}{3 \over 2}SI\). Chứng minh rằng \(SA\parallel \left( {BI{\rm{D}}} \right)\). Giải: a) Gọi H là trung điểm của SC Ta có: \({{DG} \over {DH}} = {2 \over 3} \,\,\,\,\, \left( 1 \right)\) \(BC\parallel A{\rm{D}} \Rightarrow {{O{\rm{D}}} \over {OB}} = {{OA} \over {OC}} = {{AD} \over {BC}} = 2\) Quảng cáo \( \Rightarrow O{\rm{D}} = 2{\rm{O}}B\) \( \Rightarrow {{O{\rm{D}}} \over {B{\rm{D}}}} = {2 \over 3} \,\,\,\, \left( 2 \right)\) Từ (1) và (2) \(\Rightarrow {{DG} \over {DH}} = {{O{\rm{D}}} \over {B{\rm{D}}}} \Rightarrow OG\parallel BH\) \(BH \subset \left( {SBC} \right) \Rightarrow OG\parallel \left( {SBC} \right)\) b) Gọi M’ là trung điểm của \(SA \Rightarrow MM'\parallel A{\rm{D}}\) và \(MM' = {{A{\rm{D}}} \over 2}\). Mặt khác vì \(BC\parallel A{\rm{D}}\) và \(BC = {{A{\rm{D}}} \over 2}\) nên \(BC\parallel MM'\) và \(BC = MM'\). Do đó tứ giác BCMM’ là hình bình hành \( \Rightarrow CM\parallel BM'\) mà \(BM' \subset \left( {SAB} \right)\) \( \Rightarrow CM\parallel \left( {SAB} \right)\) c) Ta có: \({{OC} \over {OA}} = {1 \over 2}\) nên \({{OC} \over {CA}} = {1 \over 3}\). Mặt khác vì \(SC = {3 \over 2}SI\) nên \({{CI} \over {CS}} = {1 \over 3}\). \({{OC} \over {CA}} = {{CI} \over {CS}} \Rightarrow OI\parallel SA\) \(OI \subset \left( {BID} \right) \Rightarrow SA\parallel \left( {BID} \right)\) Sachbaitap.com
Xem lời giải SGK - Toán 11 - Xem ngay >> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
Xem thêm tại đây:
Bài 3. Đường thẳng và mặt phẳng song song
|
Mặt phẳng này lần lượt cắt các cạnh BC, BD và AD tại N, P và Q.
Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. M là một điểm di động trên đoạn AB
Từ bốn đỉnh của hình bình hành ABCD vẽ bốn nửa đường thẳng song song cùng chiều Ax, By, Cz và Dt sao cho chúng cắt mặt phẳng (ABCD).