Bài 2.31 trang 81 Sách bài tập (SBT) Hình học 11Cho hai tia Ax, By chéo nhau. Lấy M, N lần lượt là các điểm di động trên Ax, By Cho hai tia Ax, By chéo nhau. Lấy M, N lần lượt là các điểm di động trên Ax, By. Gọi \(\left( \alpha \right)\) là mặt phẳng chứa By và song song với Ax. Đường thẳng qua M và song song với AB cắt \(\left( \alpha \right)\) tại M’. a) Tìm tập hợp điểm M’. b) Gọi I là trung điểm của MN. Tìm tập hợp các điểm I khi AM = BN Giải:
a) Gọi \(\left( \beta \right)\) là mặt phẳng xác định bởi hai đường thẳng AB và Ax Do \(Ax\parallel \left( \alpha \right)\) nên \(\left( \beta \right)\) sẽ cắt \(\left( \alpha \right)\) theo giao tuyến Bx’ song song với Ax. Ta có M’ là điểm chung của \(\left( \alpha \right)\) và \(\left( \beta \right)\) nên M’ thuộc Bx’. Khi M trùng A thì M’ trùng B nên tập hợp M’ là tia Bx’. Ta có tứ giác ABM’M là hình bình hành nên BM’ = AM = BN. Tam giác BM’N cân tại B. Suy ra trung điểm I của cạnh đáy NM’ thuộc phân giác trong Bt của góc B trong tamgiác cân BNM’.Dễ thấy rằng Bt cố định. Gọi O là trung điểm của AB. Trong mặt phẳng (AB, Bt), tứ giác OBIJ là hình bình hành nên \(\overrightarrow {JI} = \overrightarrow {BO} \).Do đó I là ảnh của J trong phép tịnh tiến theo vectơ \(\overrightarrow {BO} \). Vậy tập hợp I là tia Ot’ song song với Bt. Sachbaitap.com
Xem lời giải SGK - Toán 11 - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 4. Hai mặt phẳng song song
|
Hình chiếu song song của hai đường thẳng chéo nhau có thể song song với nhau hay không? Hình chiếu song song của hai đường thẳng cắt nhau có song song với nhau hay không?
Chứng minh rằng có thể xem tam giác ABC là hình chiếu song song của một tam giác đều nào đó.
Hãy vẽ hình biểu diễn của một đường tròn cùng với hai đường kính vuông góc của đường tròn đó.