Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 2.4 trang 23 Sách bài tập (SBT) Đại số và giải tích 11

Giải các phương trình:

 Giải các phương trình:

a) \({{\sin 3x} \over {\cos 3x - 1}} = 0\)    

b) \(\cos 2x\cot \left( {x - {\pi  \over 4}} \right) = 0\)    

c) \(\tan \left( {2x + {{60}^o}} \right)\cos \left( {x + {{75}^o}} \right) = 0\)   

d) \(\left( {\cot x + 1} \right)\sin 3x = 0\)   

Giải:

a) Điều kiện: cos3x ≠ 1. Ta có:

sin3x = 0 ⇒ 3x = kπ. Do điều kiện, các giá trị k = 2m, m ∈ Z bị loại nên 3x = (2m + 1)π. Vậy nghiệm của phương trình là \(x = \left( {2m + 1} \right){\pi  \over 3},m \in Z\)

b) Điều kiện: \(\sin \left( {x - {\pi  \over 4}} \right) \ne 0\). Biến đổi phương trình:

\(\cos 2x.\cot \left( {x - {\pi  \over 4}} \right) = 0 \Rightarrow \cos 2x.\cos \left( {x - {\pi  \over 4}} \right) = 0\)

\( \Rightarrow \left[ \matrix{
\cos 2x = 0 \hfill \cr
\cos \left( {x - {\pi \over 4}} \right) = 0 \hfill \cr} \right. \Rightarrow \left[ \matrix{
x = {\pi \over 4} + k{\pi \over 2},k \in Z \hfill \cr
x = {{3\pi } \over 4} + k\pi ,k \in Z. \hfill \cr} \right.\)

Do điều kiện, các giá trị \(x = {\pi  \over 4} + 2m{\pi  \over 2},m \in Z\) bị loại. Vậy nghiệm của phương trình là:

\(x = {\pi  \over 4} + \left( {2m + 1} \right){\pi  \over 2},m \in Z\) và \(x = {{3\pi } \over 4} + k\pi ,k \in Z\)

c) Điều kiện:

\(\cos \left( {2x + {{60}^o}} \right) \ne 0\)

\(\eqalign{
& \tan \left( {2x + {{60}^o}} \right)\cos \left( {x + {{75}^o}} \right) = 0 \cr
& \Rightarrow \sin \left( {2x + {{60}^o}} \right)\cos \left( {x + {{75}^o}} \right) = 0 \cr
& \Rightarrow \left[ \matrix{
\sin \left( {2x + {{60}^o}} \right) = 0 \hfill \cr
\cos \left( {x + {{75}^o}} \right) = 0 \hfill \cr} \right. \cr
& \Rightarrow \left[ \matrix{
2x + {60^o} = k{180^o} \hfill \cr
x + {75^o} = {90^o} + k{180^o},k \in Z \hfill \cr} \right. \cr
& \Rightarrow \left[ \matrix{
x = - {30^o} + k{90^o},k \in Z \hfill \cr
x = {15^o} + k{180^o},k \in Z \hfill \cr} \right. \cr}\)

Do điều kiện ở trên, các giá trị \(x = {15^o} + k{180^o},k \in Z\) bị loại.

Vậy nghiệm của phương trình là: \(x =  - {30^o} + k{90^o},k \in Z\)

d) Điều kiện: sinx ≠ 0. Ta có:

\(\eqalign{
& \left( {\cot x + 1} \right)\sin 3x = 0 \cr
& \Leftrightarrow \left[ \matrix{
\cot x = - 1 \hfill \cr
\sin 3x = 0 \hfill \cr} \right. \cr
& \Rightarrow \left[ \matrix{
x = - {\pi \over 4} + k\pi ,k \in Z \hfill \cr
x = k{\pi \over 3},k \in Z \hfill \cr} \right. \cr} \)

Do điều kiện sinx ≠ 0 nên những giá trị \(x = k{\pi  \over 3}\) và \(k = 3m,m \in Z\) bị loại.

Vậy nghiệm của phương trình là:

\(x =  - {\pi  \over 4} + k\pi {\rm{ ; }}x = {\pi  \over 3} + k\pi\) và \(x = {{2\pi } \over 3} + k\pi ,k \in Z\)

Xem lời giải SGK - Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.