Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 2.5 trang 23 Sách bài tập (SBT) Đại số và giải tích 11

Tìm những giá trị của x để giá trị của các hàm số tương ứng sau bằng nhau

Tìm những giá trị của x để giá trị của các hàm số tương ứng sau bằng nhau

a) \(y = \cos \left( {2x - {\pi  \over 3}} \right)$ và $y = \cos \left( {{\pi  \over 4} - x} \right)\)

b) \(y = \sin \left( {3x - {\pi  \over 4}} \right)$ và $y = \sin \left( {x + {\pi  \over 6}} \right)\)

c) \(y = \tan \left( {2x + {\pi  \over 5}} \right)$ và $y = \tan \left( {{\pi  \over 5} - x} \right)\)     

d) \(y = \cot 3x\) và \(y = \cot \left( {x + {\pi  \over 3}} \right)\)  

Giải:

a)

\(\eqalign{
& \cos \left( {2x - {\pi \over 3}} \right) = \cos \left( {{\pi \over 4} - x} \right) \cr
& \Leftrightarrow \left[ \matrix{
2x - {\pi \over 3} = {\pi \over 4} - x + k2\pi ,k \in Z \hfill \cr
2x - {\pi \over 3} = - {\pi \over 4} + x + k2\pi ,k \in Z \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
3x = {{7\pi } \over {12}} + k2\pi ,k \in Z \hfill \cr
x = {\pi \over {12}} + k2\pi ,k \in Z \hfill \cr} \right. \cr} \)

Vậy các giá trị cần tìm là: \(x = {{7\pi } \over {36}} + k{{2\pi } \over 3},k \in Z\) và \(x = {\pi  \over {12}} + k2\pi ,k \in Z\)

b)

\(\eqalign{
& \sin \left( {3x - {\pi \over 4}} \right) = \sin \left( {x + {\pi \over 6}} \right) \cr
& \Leftrightarrow \left[ \matrix{
3x - {\pi \over 4} = x + {\pi \over 6} + k2\pi ,k \in Z \hfill \cr
3x - {\pi \over 4} = \pi - x - {\pi \over 6} + k2\pi ,k \in Z \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
2x = {{5\pi } \over {12}} + k2\pi ,k \in Z \hfill \cr
4x = {{13\pi } \over {12}} + k2\pi ,k \in Z \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
x = {{5\pi } \over {24}} + k\pi ,k \in Z \hfill \cr
x = {{13\pi } \over {48}} + k{\pi \over 2},k \in Z \hfill \cr} \right. \cr} \)

Vậy các giá trị cần tìm là: \(x = {{5\pi } \over {24}} + k\pi ,k \in Z\) và \(x = {{13\pi } \over {48}} + k{\pi  \over 2},k \in Z\)

c)

\(\eqalign{
& \tan \left( {2x + {\pi \over 3}} \right) = \tan \left( {{\pi \over 5} - x} \right) \cr
& \Leftrightarrow \left\{ \matrix{
\cos \left( {2x + {\pi \over 5}} \right) \ne 0;\,\,\cos \left( {{\pi \over 5} - x} \right) \ne 0\left( 1 \right) \hfill \cr
2x + {\pi \over 5} = {\pi \over 5} - x + k\pi ,k \in Z\left( 2 \right) \hfill \cr} \right. \cr
& \left( 2 \right) \Leftrightarrow x = {{k\pi } \over 3},k \in Z \cr} \)

Các giá trị này thỏa mãn điều kiện (1). Vậy ta có: \(x = {{k\pi } \over 3},k \in Z\)

d) 

\(\eqalign{
& \cot 3x = \cot \left( {x + {\pi \over 3}} \right) \cr
& \Leftrightarrow \left\{ \matrix{
\sin 3x \ne 0;\,\,\sin \left( {x + {\pi \over 3}} \right) \ne 0\,\,\,\,\,\left( 3 \right) \hfill \cr
3x = x + {\pi \over 3} + k\pi ,k \in Z\,\,\,\,\left( 4 \right) \hfill \cr} \right. \cr
& \left( 4 \right) \Leftrightarrow x = {\pi \over 6} + {{k\pi } \over 2},k \in Z \cr} \)

Nếu k = 2m + 1, m ∈ Z thì các giá trị này không thỏa mãn điều kiện (3).

Suy ra các giá trị cần tìm là \(x = {\pi  \over 6} + m\pi ,m \in Z\)

Xem lời giải SGK - Toán 11 - Xem ngay

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.