Bài 28 trang 105 SBT Hình học 10 Nâng caoGiải bài tập Bài 28 trang 105 SBT Hình học 10 Nâng cao Tìm các góc của một tam giác biết phương trình các cạnh tam giác đó là: \(x + 2y = 0 ; 2x + y = 0 ; x + y = 1.\) Giải Xét tam giác \(ABC\) với phương trình các cạnh của tam giác như đã cho. Khi đó , tọa độ các đỉnh của tam giác là nghiệm của các hệ: \(\left\{ \begin{array}{l}x + 2y = 0\\2x + y = 0\end{array} \right. ;\) \( \left\{ \begin{array}{l}x + 2y = 0\\x + y - 1 = 0\end{array} \right. ;\) \( \left\{ \begin{array}{l}2x + y = 0\\x + y - 1 = 0\end{array} \right.\). Giải các hệ này ta được tọa độ các đỉnh tam giác là \((0 ; 0), (2 ; -1), (-1 ; 2).\) Giả sử \(A(0 ; 0), B(2 ; -1), C(-1 ; 2).\) Suy ra \(\overrightarrow {AB} = (2 ; - 1) ,\) \( \overrightarrow {AC} = ( - 1 ; 2), \) \( \overrightarrow {BC} = ( - 3 ; 3). AB = AC = \sqrt 5 \) nên tam giác \(ABC\) cân tại \(A\). \(\begin{array}{l}\cos A = \cos (\overrightarrow {AB} , \overrightarrow {AC} )\\ = \dfrac{{2.( - 1) + ( - 1).2}}{{\sqrt {{2^2} + {1^2}} .\sqrt {{1^2} + {2^2}} }} = - \dfrac{4}{5} \\ \Rightarrow \widehat A \approx {143^0}8'\\ \Rightarrow \widehat B = \widehat C \approx {18^0}26'\end{array}\) Sachbaitap.com
Xem thêm tại đây:
Bài 3. Khoảng cách và góc.
|