Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.11 trang 170 Sách bài tập (SBT) Đại số và giải tích 11

Chứng minh các phương trình sau luôn có nghiệm với mọi giá trị của tham số m :

Chứng minh các phương trình sau luôn có nghiệm với mọi giá trị của tham số m :

a) \(\left( {1 - {m^2}} \right){\left( {x + 1} \right)^3} + {x^2} - x - 3 = 0\) ;

b) \(m\left( {2\cos x - \sqrt 2 } \right) = 2\sin 5x + 1\)    

Giải:

a) \(\left( {1 - {m^2}} \right){\left( {x + 1} \right)^3} + {x^2} - x - 3 = 0\)    

\(f\left( x \right) = \left( {1 - {m^2}} \right){\left( {x + 1} \right)^3} + {x^2} - x - 3\) là hàm đa thức liên tục trên R. Do đó nó liên tục trên [-2; -1]

Ta có \(f\left( { - 1} \right) =  - 1 < 0\) và \(f\left( { - 2} \right) = {m^2} + 2 > 0\) nên \(f\left( { - 1} \right)f\left( { - 2} \right) < 0\) với mọi m.

Do đó, phương trình \(f\left( x \right) = 0\) luôn có ít nhất một nghiệm trong khoảng (-2; -1) với mọi m. Nghĩa là, phương trình \(\left( {1 - {m^2}} \right){\left( {x + 1} \right)^3} + {x^2} - x - 3 = 0\) luôn có nghiệm với mọi m.

b) \(m\left( {2\cos x - \sqrt 2 } \right) = 2\sin 5x + 1\)    

HD : Xét hàm số \(f\left( x \right) = m\left( {2\cos x - \sqrt 2 } \right) - 2\sin 5x - 1\) trên đoạn \(\left[ { - {\pi  \over 4};{\pi  \over 4}} \right]\)

Xem lời giải SGK - Toán 11 - Xem ngay

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Xem thêm tại đây: Bài 3. Hàm số liên tục