Bài 3.16 trang 179 sách bài tập (SBT) - Giải tích 12Giả sử hàm số f(x) liên tục trên đoạn [-a; a]. Chứng minh rằng: Giả sử hàm số f(x) liên tục trên đoạn [-a; a]. Chứng minh rằng: \(\int\limits_{ - a}^a {f(x)dx = } \left\{ {\matrix{{2\int\limits_0^a {f(x)dx,(1)} } \cr {0,(2)} \cr} } \right.\) (1) : nếu f là hàm số chẵn (2): nếu f là hàm số lẻ. Áp dụng để tính: \(\int\limits_{ - 2}^2 {\ln (x + \sqrt {1 + {x^2}} } )dx\) Hướng dẫn làm bài Giả sử hàm số f(x) là hàm số chẵn trên đoạn [-a; a], ta có: \(\int\limits_{ - a}^a {f(x)dx = \int\limits_{ - a}^0 {f(x)dx + \int\limits_0^a {f(x)dx} } } \) Đổi biến x = - t đối với tích phân \(\int\limits_{ - a}^0 {f(x)dx} \) , ta được: \(\int\limits_{ - a}^0 {f(x)dx = - \int\limits_a^0 {f( - t)dt = \int\limits_0^a {f(t)dt = \int\limits_0^a {f(x)dx} } } } \) Vậy \(\int\limits_{ - a}^a {f(x)dx = 2\int\limits_0^a {f(x)dx} } \) Trường hợp sau chứng minh tương tự. Áp dụng: Vì \(g(x) = \ln (x + \sqrt {1 + {x^2}} )\) là hàm số lẻ trên đoạn [-2; 2] nên \(\int\limits_{ - 2}^2 {g(x)dx = 0}\) Sachbaitap.com
Xem lời giải SGK - Toán 12 - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 2. Tích phân
|
Giả sử hàm số f(x) liên tục trên đoạn [a; b]. Chứng minh rằng: