Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.2 trang 143 Sách bài tập (SBT) Toán Hình học 10

Cho đường thẳng có phương trình tham số

Cho đường thẳng \(\Delta \) có phương trình tham số  

\(\left\{ \matrix{
x = 2 + 2t \hfill \cr
y = 3 + t \hfill \cr} \right.\)

a) Tìm điểm M nằm trên \(\Delta \) và cách điểm A(0;1) một khoảng bằng 5.

b) Tìm tọa độ giao điểm của đường thẳng \(\Delta \) với đường thẳng x + y + 1 = 0

c) Tìm M trên \(\Delta \) sao cho AM ngắn nhất.

Gợi ý làm bài

a) \(M(2 + 2t;3 + t) \in \Delta .\)

\(AM = 5 \Leftrightarrow {(2 + 2t)^2} + {(2 + t)^2} = 25\)

\(\Leftrightarrow 5{t^2} + 12t - 17 = 0 \Leftrightarrow t = 1 \vee t =  - {{17} \over 5}\)

Vậy M có tọa độ là (4;4) hay \(\left( {{{ - 24} \over 5};{{ - 2} \over 5}} \right)\)

b) \(M(2 + 2t;3 + t) \in \Delta .\)

\(\eqalign{
& d:x + y + 1 = 0 \cr
& M \in d \Leftrightarrow 2 + 2t + 3 + t + 1 = 0 \Leftrightarrow t = - 2 \cr} \)

Vậy M có tọa độ là (-2;1).

c) \(M(2 + 2t;3 + t) \in \Delta .\)

\(\overrightarrow {AM}  = (2 + 2t;2 + t)\), \({\overrightarrow u _\Delta } = (2;1)\)

Ta có AM ngắn nhất \( \Leftrightarrow \overrightarrow {AM}  \bot {\overrightarrow u _\Delta }\)

\( \Leftrightarrow 2(2 + 2t) + (2 + t) = 0 \Leftrightarrow t =  - {6 \over 5}\)

Vậy M có tọa độ là \(\left( { - {2 \over 5};{9 \over 5}} \right).\)

Sachbaitap.net

Xem lời giải SGK - Toán 10 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.