Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.34 trang 160 Sách bài tập (SBT) Toán Hình Học 10

Cho elip (E)

Cho elip (E) : \(9{x^2} + 25{y^2} = 225\)

a) Tìm tọa độ hai điểm \({F_1}\), \({F_2}\) và các đỉnh của (E).

b) Tìm \(M \in (E)\) sao cho M nhìn \({F_1}\), \({F_2}\) dưới một góc vuông.

Gợi ý làm bài

(E): \(9{x^2} + 25{y^2} = 225 \Leftrightarrow {{{x^2}} \over {25}} + {{{y^2}} \over 9} = 1\)

a) Ta có : \({a^2} = 25,{b^2} = 9\)

\(\Rightarrow a = 5,b = 3\)

Ta có : \({c^2} = {a^2} - {b^2} = 16\)

\( \Rightarrow c = 4\)

Vậy (E) có hai tiêu điểm là : \({F_1}\left( { - 4;0} \right)\) và \({F_2}\left( {4;0} \right)\) và có bốn đỉnh là \({A_1}\left( { - 5;0} \right)\), \({A_2}\left( {5;0} \right)\), \({B_1}\left( {0; - 3} \right)\), \({B_2}\left( {0;3} \right)\).

b) Gọi M(x;y) là điểm cần tìm, ta có : 

\(\left\{ \matrix{
M \in (E) \hfill \cr
\widehat {{F_1}M{F_2}} = {90^ \circ } \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
M \in (E) \hfill \cr
O{M^2} = {c^2} \hfill \cr} \right.\left\{ \matrix{
9{x^2} + 25{y^2} = 225 \hfill \cr
{x^2} + {y^2} = 16 \hfill \cr} \right.\)

\(\left\{ \matrix{
{x^2} = {{175} \over {16}} \hfill \cr
{y^2} = {{81} \over {16}} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = \pm {{5\sqrt 7 } \over 4} \hfill \cr
y = \pm {9 \over 4}. \hfill \cr} \right.\)

Vậy có bốn điểm M thỏa mãn điều kiện của đề bài là : 

\(\left( {{{5\sqrt 7 } \over 4};{9 \over 4}} \right)\), \(\left( {{{5\sqrt 7 } \over 4}; - {9 \over 4}} \right)\), \(\left( { - {{5\sqrt 7 } \over 4};{9 \over 4}} \right)\), \(\left( { - {{5\sqrt 7 } \over 4}; - {9 \over 4}} \right)\)

Sachbaitap.net

Xem lời giải SGK - Toán 10 - Xem ngay

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.