Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.5 trang 36 Sách bài tập (SBT) Đại số và giải tích 11

Giải các phương trình sau

Giải các phương trình sau

a) \({\cos ^2}x + 2\sin x\cos x + 5{\sin ^2}x = 2\)

b) \(3{\cos ^2}x - 2\sin 2x + {\sin ^2}x = 1\)

c) \(4{\cos ^2}x - 3\sin x\cos x + 3{\sin ^2}x = 1\)

Giải

a) \({\cos ^2}x + 2\sin x\cos x + 5{\sin ^2}x = 2\)

Rõ ràng cosx = 0 không thỏa mãn phương trình. Với cosx ≠ 0, chia hai vế cho cos2x ta được:

\(\eqalign{
& 1 + 2\tan x + 5{\tan ^2}x = 2\left( {1 + {{\tan }^2}x} \right) \cr
& \Leftrightarrow 3{\tan ^2}x + 2\tan x - 1 = 0 \cr
& \Leftrightarrow \left[ \matrix{
\tan x = - 1 \hfill \cr
\tan x = {1 \over 3} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = - {\pi \over 4} + k\pi ,k \in {\rm Z} \hfill \cr
x = \arctan {1 \over 3} + k\pi ,k \in {\rm Z} \hfill \cr} \right. \cr} \)

b) \(3{\cos ^2}x - 2\sin 2x + {\sin ^2}x = 1\)

Với cosx = 0 ta thấy hai vế đều bằng 1. Vậy phương trình có nghiệm \(x = {\pi  \over 2} + k\pi ,k \in {\rm Z}\)

Trường hợp cosx ≠ 0, chia hai vế cho cos2x ta được:

\(\eqalign{
& 3 - 4\tan x + {\tan ^2}x = 1 + {\tan ^2}x \cr
& \Leftrightarrow 4\tan x = 2 \cr
& \Leftrightarrow \tan x = {1 \over 2} \cr
& \Leftrightarrow x = \arctan {1 \over 2} + k\pi ,k \in {\rm Z} \cr} \)

Vậy nghiệm của phương trình là \(x = {\pi  \over 2} + k\pi ,k \in {\rm Z}\) và \(x = \arctan {1 \over 2} + k\pi ,k \in {\rm Z}\)

c) \(4{\cos ^2}x - 3\sin x\cos x + 3{\sin ^2}x = 1\)

Rõ ràng cosx ≠ 0, chia hai vế của phương trình cho cos2x ta được:

\(\eqalign{
& 4 - 3\tan x + 3{\tan ^2}x = 1 + {\tan ^2}x \cr
& \Leftrightarrow 2{\tan ^2}x - 3\tan x + 3 = 0 \cr} \)

Phương trình cuối vô nghiệm đối với tanx, do đó phương trình đã cho vô nghiệm

Xem lời giải SGK - Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.