Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 36 trang 124 Sách bài tập Hình học lớp 12 Nâng cao

Trong mỗi trường hợp sau, viết phương trình mặt phẳng :

Trong mỗi trường hợp sau, viết phương trình mặt phẳng :

a) Đi qua ba điểm  A(-1;2;3),B(2;-4;3), C(4;5;6).

b) Đi qua điểm M0(1;3;-2) và vuông góc với trục Oy.

c) Đi qua điểm M0(1;3;-2) và vuông góc với đường thẳng BC với B=(0;2;-3), C=(1;-4;1).

d) Đi qua điểm M0(1;3;-2) và song song với mặt phẳng

2x-y+3z+4=0.

e) Đi qua hai điểm A(3;1;-1), B(2;-1;4) và vuông góc với mặt phẳng 2x-y+3z+4=0.

g) Đi qua điểm M0(2;-1;2),song song với trục Oy và vuông góc với mặt phẳng 2x-y+3z+4=0.

h) Đi qua điểm M0(-2;3;1) và vuông góc với hai mặt phẳng 

\(\eqalign{
& \left( \alpha \right):2x + y + 2z + 5 = 0 \cr
& \left( {\alpha '} \right):3x + 2y + z - 3 = 0 \cr} \)

Giải

a) Cách 1: Mặt phẳng cần tìm có vec tơ pháp tuyến là :

\(\eqalign{  & \overrightarrow n  = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].  \cr  & \overrightarrow {AB}  = (3; - 6;0),\overrightarrow {AC}  = (5;3;3) \cr&\Rightarrow \overrightarrow n  = \left( {\left| \matrix{   - 6 \hfill \cr  3 \hfill \cr}  \right.\left. \matrix{  0 \hfill \cr  3 \hfill \cr}  \right|;\left| \matrix{  0 \hfill \cr  3 \hfill \cr}  \right.\left. \matrix{  3 \hfill \cr  5 \hfill \cr}  \right|;\left| \matrix{  3 \hfill \cr  5 \hfill \cr}  \right.\left. \matrix{   - 6 \hfill \cr  3 \hfill \cr}  \right|} \right)  \cr  &  = ( - 18; - 9;39). \cr} \)

Hiển nhiên \({1 \over 3}\overrightarrow n  = ( - 6; - 3;13)\) cũng là vec tơ pháp tuyến của mặt phẳng cần tìm . Vậy mặt phẳng cần tìm đi qua điểm A(-1;2;3) với vec tơ pháp tuyến (-6;-3;13) nên có phương trình :

\(-6(x+1)-3(y-2)+13(z-3)=0\)

hay \(-6x-3y+13z-39=0.\)

Cách 2: Mặt phẳng cần tìm có phương trình dạng :

Ax+By+Cz+D=0.

Vì ba điểm A, B, C nằm trên mặt phẳng đó nên tọa độ của chúng phải thỏa mãn phương trình mặt phẳng và ta có hệ :

\(\left\{ \matrix{   - A + 2B + 3C + D = 0 \hfill \cr  2A - 4B + 3C + D = 0 \hfill \cr  4A + 5B + 6C + D = 0. \hfill \cr}  \right.\)

\( \Rightarrow \left\{ \matrix{   - 3A + 6B = 0 \hfill \cr  2A + 9B + 3C = 0 \hfill \cr}  \right. \Rightarrow \left\{ \matrix{  A = 2B \hfill \cr  B =  - {3 \over {13}}C. \hfill \cr}  \right.\)

Suy ra :\(A = 2B =  - {6 \over {13}}C,D = A - 2B - 3C =  - 3C.\)

Ta có thể chọn \(C=13\), khi đó \(A=-6, B=-3, D=-39\) và phương trình mặt phẳng cần tìm là

\(-6x-3y+13z-39=0.\)

b) Mặt phẳng qua M0(1;3;-2), vuông góc với trục Oy nên nó song song với mp(Oxz).

Vậy phương trình mặt phẳng  cần tìm  là \(y=3\) (xem bài 35a).

Ta có thể giải cách khác như sau:

Mặt phẳng cần tìm là vec tơ pháp tuyến \(\overrightarrow n  = \overrightarrow j  = (0;1;0)\) nên có phương trình :

\(0(x - 1) + 1.(y - 3) + 0(z + 2) = 0 \Leftrightarrow y - 3 = 0.\)

c) Vec tơ pháp tuyến của mặt phẳng cần tìm là \(\overrightarrow n  = \overrightarrow {BC}  = (1; - 6;4)\),

Vậy phương trình mặt phẳng cần tìm là:

\(1(x-1)-6(y-3)+4(z+2)=0\)

hay \(x-6y+4z+25=0.\)

d) Mặt phẳng cần tìm song song với mặt phẳng : 2x-y+3z+4=0 nên phương trình có dạng

2x-y+3z+D=0 với \(D \ne 4\). Vì M0(1;3;-2) thuộc mặt phẳng đó nên \(2.1-3+3.(-2)+D=0 \Rightarrow D = 7.\)

Phương trình mặt phẳng cần tìm là: \(2x-y+3z+7=0.\)

Ta cũng có thể giải bằng cách khác như sau: Vì mặt phẳng cần tìm song song với mặt phẳng 2x-y+3z+4=0 nên nó có một vect ơ pháp tuyến là \(\overrightarrow n  = (2; - 1;3)\).

Vậy phương trình mặt phẳng cần tìm là

\(2(x - 1) - 1(y - 3) + 3(z + 2) = 0 \)

\(\Leftrightarrow 2x - y + 3z + 7 = 0.\)

e) Véc tơ pháp tuyến \(\overrightarrow n \) của mặt phẳng cần tìm vuông góc với hai vec tơ \(\overrightarrow {AB}  = ( - 1; - 2;5)\) và \(\overrightarrow {n'}  = (2; - 1;3)\) (\(\overrightarrow {n'} \) là vec tơ pháp tuyến của mặt phẳng \(2x-y+3z+4=0\)).

Vậy ta lấy \(\overrightarrow n  = \left[ {\overrightarrow {AB} ,\overrightarrow {n'} } \right] = \left( {\left| \matrix{   - 2 \hfill \cr   - 1 \hfill \cr}  \right.\left. \matrix{  5 \hfill \cr  3 \hfill \cr}  \right|;\left| \matrix{  5 \hfill \cr  3 \hfill \cr}  \right.\left. \matrix{   - 1 \hfill \cr  2 \hfill \cr}  \right|;\left| \matrix{   - 1 \hfill \cr  2 \hfill \cr}  \right.\left. \matrix{   - 2 \hfill \cr   - 1 \hfill \cr}  \right|} \right) \)

      \(= ( - 1;13;5).\)

Do đó phương trình mặt phẳng cần tìm là:

\(-1(x-3)+13(y-1)+5(z+1)=0\) 

hay \(x-13y-5z+5=0.\)

g) Vec tơ pháp tuyến của mặt phẳng 2x-y+3z+4=0 là \(\overrightarrow {n'}  = (2; - 1;3).\)

Vec tơ pháp tuyến \(\overrightarrow n \) của mặt phẳng cần tìm là :

\(\overrightarrow n  = \left[ {\overrightarrow j ,\overrightarrow {n'} } \right] = \left( {\left| \matrix{  1 \hfill \cr   - 1 \hfill \cr}  \right.\left. \matrix{  0 \hfill \cr  3 \hfill \cr}  \right|;\left| \matrix{  0 \hfill \cr  3 \hfill \cr}  \right.\left. \matrix{  0 \hfill \cr  2 \hfill \cr}  \right|;\left| \matrix{  0 \hfill \cr  2 \hfill \cr}  \right.\left. \matrix{  1 \hfill \cr   - 1 \hfill \cr}  \right|} \right) \)

      \(= (3;0; - 2).\)

Vậy phương trình của nó là :

\(3x-2z-2=0.\)

h) Mặt phẳng \(\left( \alpha  \right)\) và \(\left( {\alpha '} \right)\) có vec tơ pháp tuyến lần lượt là \(\overrightarrow {{n_\alpha }}  = (2;1;2),\overrightarrow {n{'_\alpha }}  = (3;2;1).\)

Mặt phẳng cần tìm vuông góc với \(\left( \alpha  \right)\) và \(\left( {\alpha '} \right)\) nên có vec tơ pháp tuyến là

Vậy phương trình của mặt phẳng cần tìm là:

\(-3(x+2)+4(y-3)+1(z-1)\)

hay \(3x-4y-z+19 = 0.\)

Sachbaitap.com

Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Xem thêm tại đây: Bài 2. Phương trình mặt phẳng