Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 39 trang 124 Sách bài tập Hình học lớp 12 Nâng cao

Viết phương trình mặt phẳng đi qua điểm

Viết phương trình mặt phẳng đi qua điểm M0(1;2;4), cắt các trục tọa độ Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho \(OA = OB = OC \ne 0.\)

Giải

Mặt phẳng cần tìm đi qua điểm M0(1;2;4) có phương trình:

 \(a(x-1)+b(y-2)+c(z-4)=0\)            (1)

hay \(ax+by+cz=a+2b+4c\) với \(a + 2b + 4c \ne 0\) (theo giả thiết)

Từ đó, ta xác định được tọa độ các giao điểm A, B, C là:

\(\eqalign{  & A = \left( {{{a + 2b + 4c} \over a};0;0} \right)\cr&B = \left( {0;{{a + 2b + 4c} \over b};0} \right)  \cr  & C = \left( {0;0;{{a + 2b + 4c} \over c}} \right) \cr} \)

Vì OA = OB = OC nên \(O{A^2} = O{B^2} = O{C^2},\) do đó ta có

\({{{{\left( {a + 2b + 4c} \right)}^2}} \over {{a^2}}} = {{{{\left( {a + 2b + 4c} \right)}^2}} \over {{b^2}}} = {{{{\left( {a + 2b + 4c} \right)}^2}} \over {{c^2}}}\)

Hay \({a^2} = {b^2} = {c^2}\). Có những trường hợp sau xảy ra:

+) Nếu a, b, c cùng dấu thì \(a=b=c\) và phương trình (1) trở thành

\(x+y+z-7=0\).

+) Nếu a, b cùng dấu và khác dấu với c thì \(a=b=-c\). Phương trình (1) trở thành

\(x+y-z+1=0\).

+) Nếu a, c cùng dấu và khác dấu với c thì \(a=c=-b\). Phương trình (1) trở thành

\(x-y+z-3=0\).

+) Nếu b, c cùng dấu và khác dấu với a thì \(–a=b=c\). Phương trình (1) trở thành :

\(-x+y+z-5=0\).

Sachbaitap.com

 

Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Xem thêm tại đây: Bài 2. Phương trình mặt phẳng