Bài 3.8 trang 140 Sách bài tập (SBT) Hình học 11Cho tứ diện ABCD. Gọi G là trọng tâm của tam giác ABC Cho tứ diện ABCD. Gọi G là trọng tâm của tam giác ABC. Chứng minh rằng: \(\overrightarrow {G{\rm{D}}} .\overrightarrow {GA} + \overrightarrow {G{\rm{D}}} .\overrightarrow {GB} + \overrightarrow {G{\rm{D}}} .\overrightarrow {GC} = 0\) Giải:
Ta có: \(\eqalign{ (Vì G là trọng tâm của tam giác ABCD nên \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \) ) Sachbaitap.com
Xem lời giải SGK - Toán 11 - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 2. Hai đường thẳng vuông góc
|
Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các đoạn AC, BD, AD và có MN = PQ . Chứng minh rằng AB ⊥ CD.
Chứng minh rằng một đường thẳng vuông góc với một trong hai đường thằng song song thì vuông góc với đường thẳng kia.