Bài 41 trang 11 SBT Hình học 10 Nâng caoGiải bài tập Bài 41 trang 11 SBT Hình học 10 Nâng cao Cho sáu điểm trong đó không có ba điểm nào thẳng hàng. Gọi \(\Delta \) là một tam giác có ba đỉnh lấy trong sáu điểm đó và \(\Delta '\) là tam giác có ba đỉnh là ba điểm còn lại. Chứng mminh rằng với các cánh chọn \(\Delta \) khác nhau, các đường thẳng nối trọng tâm hai tam giác \(\Delta \) và \(\Delta '\) luôn đi qua một điểm cố định. Giải Gọi \(A, B, C\) là ba đỉnh của tam giác \(\Delta \) và \(D, E, F\) là ba đỉnh của tam giác \(\Delta '\). Gọi \(G\) và \(G’\) lần lượt là trọng tâm của tam giác \(\Delta \) và \(\Delta '\) thì với điểm \(I\) tùy ý, ta có \(\overrightarrow {IA} + \overrightarrow {IB} + \overrightarrow {IC} + \overrightarrow {ID} + \overrightarrow {IE} + \overrightarrow {IF} = 3(\overrightarrow {IG} + \overrightarrow {IG'} ).\) Bởi vậy nếu chọn \(I\) là trọng tâm của hệ điểm \(A, B, C, D, E, F,\) tức là trọng tâm của hệ sáu điểm đã cho, thì \(I\) là điểm cố định và \(\overrightarrow {IG} + \overrightarrow {IG'} = \overrightarrow 0 \). Vậy các đường thẳng \(GG’\) luôn đi qua điểm \(O\) cố định (\(I\) là trung điểm của đoạn thẳng \(GG’\)). Sachbaitap.com
Xem thêm tại đây:
Bài 4. Tích của một vec tơ với một số.
|