Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 76 trang 50 SBT Hình học 10 Nâng cao

Giải bài tập Bài 76 trang 50 SBT Hình học 10 Nâng cao

Cho tam giác \(ABC\) có độ dài ba trung tuyến bằng \(15, 18, 27.\)

a) Tính diện tích của tam giác.

b) Tính độ dài các cạnh của tam giác.

Giải

a) (h.68).

 

Gọi \(I\) là trung điểm của \(BC\) và \(G\) là trọng tâm của tam giác \(ABC\) thì

\(\dfrac{{{S_{ABC}}}}{{{S_{GBC}}}} = \dfrac{{AI}}{{GI}} = 3\)

Vậy \(S = 3{S_{GBC}}\).

Lấ điểm \(D\) là điểm đối xứng với \(G\) qua \(I\) ta được hình bình hành \(BGCD\), do đó

\({S_{GBC}} = {S_{BGD}} = \dfrac{1}{2}{S_{BGCD}}\).

Vậy \({S_{ABC}} = 3{S_{BGD}}\).

Tam giác \(BGD\) có độ dài ba cạnh bằng \(10, 12, 18\) nên

\({S_{BGD}}\) \(= \sqrt {20.(20 - 10)(20 - 12)(20 - 18)} \)\( = \sqrt {20.10.8.2}  = 40\sqrt 2 \).

Vậy \(S = 3.40\sqrt 2  = 120\sqrt 2 \).

b) Giả sử \({m_a} = 15, {m_b} = 18 ,  {m_c} = 27\). Ta có

\(\left\{ \begin{array}{l}{b^2} + {c^2} = 2{m_a}^2 + \dfrac{{{a^2}}}{2}\\{c^2} + {a^2} = 2m_b^2 + \dfrac{{{b^2}}}{2}\\{a^2} + {b^2} = 2m_c^2 + \dfrac{{{c^2}}}{2}\end{array} \right. \\  \Rightarrow   {a^2} + {b^2} + {c^2} \\= \dfrac{4}{3}.\left( {m_a^2 + m_b^2 + m_c^2} \right) = 1704.\)

Ta lại có

\(\begin{array}{l}{b^2} - {a^2} = \dfrac{4}{3}\left( {m_a^2 - m_b^2} \right) =  - 132 ;  \\{b^2} - {c^2} = \dfrac{4}{3}\left( {m_c^2 - m_b^2} \right) = 540.\end{array}\)

Từ đó ta tính được \(b = 8\sqrt {11}  ;  a = 2\sqrt {209}  ; c = 2\sqrt {41}  .\)

Sachbaitap.com