Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 10 trang 62 Sách Bài Tập (SBT) Toán 9 Tập 1

Chứng minh rằng hàm số bậc nhất y = ax + b đồng biến khi a > 0 và nghịch biến khi a < 0.

Chứng minh rằng hàm số bậc nhất y = ax + b đồng biến khi a > 0 và nghịch biến khi a < 0.

Gợi ý làm bài:

Xét hàm số bậc nhất y = ax +b ( \(a \ne 0\) ) trên tập số thực R.

Với hai số \(x_1\) và \(x_2\) thuộc R và \({x_1} < {x_2}\) , ta có :

\({y_1} = {a_1} + b\)

\({y_2} = {a_2} + b\)

\({y_2} - {y_1} = \left( {a{x_2} + b} \right) - \left( {a{x_1} + b} \right) = a\left( {{x_2} - {x_1}} \right)\)    (1)

*        Trường hợp a > 0:

Ta có: \({x_1} < {x_2}\) suy ra : \({x_2} - {x_1} > 0\)             (2)

Từ (1) và (2) suy ra: \({y_2} - {y_1} = {\rm{a}}\left( {{x_2} - {x_1}} \right) > 0 \Rightarrow {y_2} >{y_1}\)

Vậy hàm số đồng biến khi a > 0.

*        Trường hợp a < 0 :

Ta có: \({x_1} < {x_2}\) suy ra : \({x_2} - {x_1} > 0\)          (3)

Từ (1) và (3) suy ra:

\({y_2} - {{\rm{y}}_1} = {\rm{a}}\left( {{x_2} - {x_1}} \right) < 0 \Rightarrow {y_2} < {y_1}\)

Vậy hàm số nghịch biến khi a < 0.

Sachbaitap.com

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.