Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 10 trang 62 Sách Bài Tập (SBT) Toán 9 Tập 1

Chứng minh rằng hàm số bậc nhất y = ax + b đồng biến khi a > 0 và nghịch biến khi a < 0.

Chứng minh rằng hàm số bậc nhất y = ax + b đồng biến khi a > 0 và nghịch biến khi a < 0.

Gợi ý làm bài:

Xét hàm số bậc nhất y = ax +b ( \(a \ne 0\) ) trên tập số thực R.

Với hai số \(x_1\) và \(x_2\) thuộc R và \({x_1} < {x_2}\) , ta có :

\({y_1} = {a_1} + b\)

\({y_2} = {a_2} + b\)

\({y_2} - {y_1} = \left( {a{x_2} + b} \right) - \left( {a{x_1} + b} \right) = a\left( {{x_2} - {x_1}} \right)\)    (1)

*        Trường hợp a > 0:

Ta có: \({x_1} < {x_2}\) suy ra : \({x_2} - {x_1} > 0\)             (2)

Từ (1) và (2) suy ra: \({y_2} - {y_1} = {\rm{a}}\left( {{x_2} - {x_1}} \right) > 0 \Rightarrow {y_2} >{y_1}\)

Vậy hàm số đồng biến khi a > 0.

*        Trường hợp a < 0 :

Ta có: \({x_1} < {x_2}\) suy ra : \({x_2} - {x_1} > 0\)          (3)

Từ (1) và (3) suy ra:

\({y_2} - {{\rm{y}}_1} = {\rm{a}}\left( {{x_2} - {x_1}} \right) < 0 \Rightarrow {y_2} < {y_1}\)

Vậy hàm số nghịch biến khi a < 0.

Sachbaitap.com

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link