Câu 110 trang 93 Sách bài tập (SBT) Toán 8 tập 1Chứng minh rằng các tia phân giác các góc của một hình bình hành cắt nhau tao thành một hình chữ nhật. Chứng minh rằng các tia phân giác các góc của một hình bình hành cắt nhau tao thành một hình chữ nhật. Giải: Gọi G, H, E, K lần lượt là giao điểm của các đường phân giác của \(\widehat A\) và\(\widehat B\); \(\widehat B\) và\(\widehat C\); \(\widehat C\) và\(\widehat D\); \(\widehat D\) và\(\widehat A\). Ta có: \(\widehat {ADF} = {1 \over 2}\widehat {ADC}\) (gt) \(\widehat {DAF} = {1 \over 2}\widehat {DAB}\) (gt) \(\widehat {ADC} + \widehat {DAB} = {180^0}\) (hai góc trong cùng phía) Suy ra: \(\widehat {ADF} + \widehat {DAF} = {1 \over 2}\left( {\widehat {ADC} + \widehat {DAB}} \right) = {1 \over 2}{.180^0} = {90^0}\) Trong ∆ AFD ta có: \(\widehat {AFD} = {180^0} - \left( {\widehat {ADF} + \widehat {DAF}} \right) = {180^0} - {90^0} = {90^0}\) \(\widehat {EFG} = \widehat {AFD}\) (đối đỉnh) \(\eqalign{ & \Rightarrow \widehat {EFG} = {90^0} \cr & \widehat {GAB} = {1 \over 2}\widehat {DAB}(gt) \cr & \widehat {GBA} = {1 \over 2}\widehat {CBA}(gt) \cr} \) \(\widehat {DAB} + \widehat {CBA} = {180^0}\) (hai góc trong cùng phía) \( \Rightarrow \widehat {GBA} + \widehat {GAB} = {1 \over 2}\left( {\widehat {DAB} + \widehat {CBA}} \right) = {1 \over 2}{.180^0} = {90^0}\) Trong ∆ AGB ta có: \(\widehat {AGB} = {180^0} - \left( {\widehat {GAB} + \widehat {GBA}} \right) = {180^0} - {90^0} = {90^0}\) hay \(\widehat G = {90^0}\) \(\eqalign{ & \widehat {EDC} = {1 \over 2}\widehat {ADC}(gt) \cr & \widehat {ECD} = {1 \over 2}\widehat {BCD}(gt) \cr} \) \(\widehat {ADC} + \widehat {BCD} = {180^0}\) (hai góc trong cùng phía) \( \Rightarrow \widehat {EDC} + \widehat {ECD} = {1 \over 2}\left( {\widehat {ADC} + \widehat {BCD}} \right) = {1 \over 2}{.180^0} = {90^0}\) Trong ∆ EDC ta có: \(\widehat {DEC} = {180^0} - \left( {\widehat {EDC} + \widehat {ECD}} \right) = {180^0} - {90^0} = {90^0}\)hay \(\widehat E = {90^0}\) Sachbaitap.com
Xem lời giải SGK - Toán 8 - Xem ngay >> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 9. Hình chữ nhật
|
Tứ giác ABCD có hai đường chéo vuông góc với nhau. Gọi E, F, G, H theo thứ tự là trung điểm các cạnh AB, BC, CD, DA . Tứ giác EFGH là hình gì ? Vì sao ?
Tìm các hình chữ nhật trên hình 17 (trong hình 17b, O là tâm của đường tròn)
Cho tam giác ABC vuông cân tại A, AC = 4cm, điểm M thuộc cạnh BC. Gọi D, E theo thứ tự là chân các đường vuông góc kẻ từ M đến AB, AC.