Câu 1.18 trang 13 sách bài tập Giải tích 12 Nâng caoTìm cực trị của các hàm số sau: Tìm cực trị của các hàm số sau: a) \(y = \sin {x^2} - \sqrt 3 {\rm{cos}}x;x \in \left[ {0;\pi } \right]\) b) \(y = 2\sin x + {\rm{cos2}}x;x \in \left[ {0;\pi } \right]\) Giải a) \(y' = 2\sin x\cos x + \sqrt 3 \sin x\) \( = \sin x(2\cos x + \sqrt 3 )\) Với \(0 < x < \pi \) ta có \(\sin x > 0\) . Do đó \(y' = 0 \Leftrightarrow \cos x = - {{\sqrt 3 } \over 2} \Leftrightarrow x = {{5\pi } \over 6}\) Bảng biến thiên
Hàm số đạt cực đại tại điểm \(x = {{5\pi } \over 6};y = \left( {{{5\pi } \over 6}} \right) = 1{3 \over 4}\) Có thể áp dụng quy tắc 2 \(y' = \sin 2x + \sqrt 3 \sin x;y'' = 2\cos x + \sqrt 3 \cos x\) \(y'' = \left( {{{5\pi } \over 6}} \right) = 2\cos {{5\pi } \over 6} + \sqrt 3 \cos {{5\pi } \over 6} \) \(= 2.{1 \over 2} + \sqrt 3 \left( { - {{\sqrt 3 } \over 2}} \right) = - {1 \over 2} < 0\) Vậy hàm số đạt cực đại tại điểm \(x = {{5\pi } \over 6};y = \left( {{{5\pi } \over 6}} \right) = 1{3 \over 4}\) b) \(y' = 2\cos x - 2\sin 2x = 2\cos x(1 - 2\sin x)\) Với \(0 < x < \pi \) , ta có \(y' = 0 \Leftrightarrow \left[ \matrix{ \cos x = 0 \hfill \cr \sin x = {1 \over 2} \hfill \cr} \right.\Leftrightarrow x = {\pi \over 2},x = {\pi \over 6},x = {{5\pi } \over 6}\) Ta áp dụng quy tắc 2 \(y'' = - 2\sin x - 4\cos 2x\) \(y'' = \left( {{\pi \over 2}} \right) = - 2\sin {\pi \over 2} - 4\cos x = 2 > 0\) Hàm số đạt cực tiểu tại điểm \(x = {\pi \over 2};y\left( {{\pi \over 2}} \right) = 1\) \(y''\left( {{\pi \over 6}} \right) = - 2\sin {\pi \over 6} - 4\cos {\pi \over 3} = - 3 < 0\) Hàm số đạt cực đại tại điểm \(x = {\pi \over 6};y\left( {{\pi \over 6}} \right) = {3 \over 2}\) \(y'' = \left( {{{5\pi } \over 6}} \right) = - 2\sin {{5\pi } \over 6} - 4\cos x{{5\pi } \over 3} = - 3 < 0\) Hàm số đạt cực đại tại điểm \(x = {{5\pi } \over 6};y = \left( {{{5\pi } \over 6}} \right) = {3 \over 2}\) Sachbaitap.com
Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 2. Cực trị của hàm số - SBT Toán 12 Nâng cao
|
Hình thang cân ABCD có đáy nhỏ AB và hai cạnh bên đều dài 1m.
Trong các tám giác vuông mà cạnh huyền có độ dài bằng 10cm, hãy xác đinh tam giác có diện tích lớn nhất.
Cắt bỏ hình quạt AOB (hình phẳng có nét gạch trong hình 1.3) từ một mảnh các tông hình tròn bán kính R