Câu 12 trang 115 Sách bài tập Hình học 11 Nâng caoGiải bài tập Câu 12 trang 115 Sách bài tập Hình học 11 Nâng cao Cho hai đường thẳng ∆, ∆1 cắt ba mặt phẳng song song (α), (β), (γ) lần lượt tại A, B, C và A1, B1, C1. Với điểm O bất kì trong không gian, đặt \(\overrightarrow {OI} = \overrightarrow {A{A_1}} ,\overrightarrow {OJ} = \overrightarrow {B{B_1}} ,\overrightarrow {OK} = \overrightarrow {C{C_1}} \) . Chứng minh rằng ba điểm I, J, K thẳng hàng. Trả lời Theo giả thiết, ta có: \(\overrightarrow {OI} = \overrightarrow {A{A_1}} ,\overrightarrow {OJ} = \overrightarrow {B{B_1}} ,\overrightarrow {OK} = \overrightarrow {C{C_1}} \) . Do (α), (β), (γ) song song với nhau, hai đường thẳng ∆, ∆1 cắt chúng lần lượt tại A, B, C và A1, B1, C1 nên theo định lí Ta-lét, ta có: \(\overrightarrow {BA} = k\overrightarrow {BC} \) và \(\overrightarrow {{B_1}{A_1}} = k\overrightarrow {{B_1}{C_1}} \) Từ \(\overrightarrow {BA} = k\overrightarrow {BC} \) nên với điểm O, ta có: \(\overrightarrow {OB} = {{\overrightarrow {OA} - k\overrightarrow {OC} } \over {1 - k}}\) Tương tự, ta cũng có: \(\overrightarrow {O{B_1}} = {{\overrightarrow {O{A_1}} - k\overrightarrow {O{C_1}} } \over {1 - k}}\) Từ đó: \(\overrightarrow {B{B_1}} = \overrightarrow {O{B_1}} - \overrightarrow {OB} = {{\overrightarrow {A{A_1}} } \over {1 - k}} - {k \over {1 - k}}\overrightarrow {C{C_1}} \) hay \(\overrightarrow {OJ} = {1 \over {1 - k}}\overrightarrow {OI} - {k \over {1 - k}}\overrightarrow {OK} \) Lấy O trùng với I, ta có \(\overrightarrow {IJ} = - {k \over {1 - k}}\overrightarrow {IK} \) Như vậy ba điểm I, J, K thẳng hàng. Sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
|
Giải bài tập Câu 13 trang 115 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 14 trang 115 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 15 trang 115 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 16 trang 117 Sách bài tập Hình học 11 Nâng cao