Câu 15 trang 115 Sách bài tập Hình học 11 Nâng caoGiải bài tập Câu 15 trang 115 Sách bài tập Hình học 11 Nâng cao Cho hình hộp ABCD.A’B’C’D’. Một đường thẳng ∆ cắt các đường thẳng AA’, BC, C’D’ lần lượt tại M, N, P sao cho \(\overrightarrow {NM} = 2\overrightarrow {NP} \) . Tính \({{MA} \over {MA'}}\) Trả lời
Đặt \(\overrightarrow {A{\rm{D}}} = \overrightarrow a ,\overrightarrow {AB} = \overrightarrow b ,\overrightarrow {AA'} = \overrightarrow c \) . Vì M thuộc đường thẳng AA’ nên \(\overrightarrow {AM} = k\overrightarrow {AA'} = k\overrightarrow c \). N là điểm thuộc đường thẳng BC nên \(\overrightarrow {BN} = l\overrightarrow a \); P là điểm thuộc đường thẳng C’D’ nên \(\overrightarrow {C'P} = m\overrightarrow b \) Với k, l, m là những số thực. Ta có: \(\eqalign{ & \overrightarrow {NM} = \overrightarrow {NB} + \overrightarrow {BA} + \overrightarrow {AM} = - l\overrightarrow a - \overrightarrow b + k\overrightarrow c \cr & \overrightarrow {NP} = \overrightarrow {NB} + \overrightarrow {BB'} + \overrightarrow {B'C'} + \overrightarrow {C'P'} \cr & = - l\overrightarrow a + \overrightarrow c + \overrightarrow a + m\overrightarrow b \cr & = \left( {1 - l} \right)\overrightarrow a + m\overrightarrow b + \overrightarrow c \cr} \) Do \(\overrightarrow {NM} = 2\overrightarrow {NP} \) nên ta có: \(\left\{ \matrix{ - l = 2\left( {1 - l} \right) \hfill \cr - 1 = 2m \hfill \cr k = 2 \hfill \cr} \right. \Rightarrow k = 2,m = - {1 \over 2},l = 2\) Vậy \({{MA} \over {MA'}} = 2\) Sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
|
Giải bài tập Câu 16 trang 117 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 17 trang 117 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 18 trang 117 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 19 trang 118 Sách bài tập Hình học 11 Nâng cao