Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 122 trang 95 Sách bài tập (SBT) Toán 8 tập 1

Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E theo thứ tự là chân các đường vuông góc kẻ từ H đến AB, AC.

Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E theo thứ tự là chân các đường vuông góc kẻ từ H đến AB, AC.

a. Chứng minh rằng AH = DE.

b. Gọi I là trung điểm của HB, K là trung điểm của HC. Chứng minh rằng DI // EK

Giải:                                                                   

a. Xét tứ giác ADHE:

\(\widehat A = {90^0}\) (gt)

\(\widehat {ADH} = {90^0}\) (vì HD ⊥ AB)

\(\widehat {AEH} = {90^0}\) (vì HE ⊥ AC)

Suy ra tứ giác ADHE là hình chữ nhật (vì có ba góc vuông)

⇒ AH = DE (tính chất hình chữ nhật)

b. ∆ BHD vuông tại D có DI là đường trung tuyến thuộc cạnh huyền BH

⇒ DI = IB = \({1 \over 2}\) BH (tính chất tam giác vuông)

⇒ ∆ IDB cân tại I \( \Rightarrow \widehat {DIB} = {{{180}^0} - 2\widehat B} \) (1)

∆ HEC vuông tại E có EK là đường trung tuyến thuộc cạnh huyền HC

⇒ EK = KH = \({1 \over 2}\)HC (tính chất tam giác vuông)

⇒ ∆ KHE cân tại K \( \Rightarrow \widehat {EKH} = {{{180}^0} - 2\widehat {KHE}}\) (2)

Tứ giác ADHE là hình chữ nhật

⇒ HE // AD hay HE // AB

 ⇒ \(\widehat B = \widehat {KHE}\) (đồng vị) (3)

Từ (1), (2) và (3) suy ra: \(\widehat {DIB} = \widehat {EKH}\)

⇒ DI // EK (vì có cặp góc đồng vị bằng nhau).

Sachbaitap.com

Xem lời giải SGK - Toán 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.

Xem thêm tại đây: Bài 9. Hình chữ nhật