Câu 126 trang 96 Sách bài tập (SBT) Toán 8 tập 1Cho tam giác ABC, điểm M di chuyển trên cạnh BC. Gọi I là trung điểm của AM. Điểm I di chuyển trên đường nào ? Cho tam giác ABC, điểm M di chuyển trên cạnh BC. Gọi I là trung điểm của AM. Điểm I di chuyển trên đường nào ? Giải: Kẻ AH ⊥ BC, IK ⊥ BC ⇒ AH // IK Trong tam giác AHM ta có: ⇒ AI = IM (gt) IK // AH (chứng minh trên) Suy ra: IK là đường trung bình của ∆ AHM ⇒ IK = \({1 \over 2}\)AH ∆ ABC cố định nên AH không thay đổi ⇒ IK = \({1 \over 2}\)AH không đổi. I thay đổi cách BC một khoảng bằng \({{AH} \over 2}\) không đổi nên I nằm trên đường thẳng song song với BC, cách BC một khoảng bằng\({{AH} \over 2}\). Khi M trùng với điểm B thì I trùng với P là trung điểm của AB. Khi M trùng với điểm C thì I trùng với Q là trung điểm của AC. Vậy khi M chuyển động trên cạnh BC của ∆ ABC thì trung điểm I của AM chuyển động trên đường trung bình PQ của ∆ ABC. Sachbaitap.com
Xem lời giải SGK - Toán 8 - Xem ngay >> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 10. Đường thẳng song song với một đường thẳng cho trước
|
a. So sánh các độ dài AM, DE. b. Tìm vị trí của điểm M trên cạnh BC để DE có độ dài nhỏ nhất.
Cho điểm A nằm ngoài đường thẳng d. Điểm M di chuyển trên đường thẳng d. Gọi B là điểm đối xứng với A qua M. Điểm B di chuyển trên đường nào ?
Cho đoạn thẳng AB, điểm M di chuyển trên đoạn thẳng ấy. Vẽ về một phía của AB các tam giác đều AMD, BME. Trung điểm I của DE di chuyển trên đường nào ?
Hình chữ nhật ABCD có cạnh AD bằng nửa đường chéo AC. Tính góc nhọn tạo bởi hai đường chéo.