Câu 1.36 trang 17 sách bài tập Giải tích 12 Nâng caoTìm tiệm cận đứng và tiệm cận ngang của đồ thị các hàm số sau: Tìm tiệm cận đứng và tiệm cận ngang của đồ thị các hàm số sau: a) \(y = {{x + 1} \over {2x + 1}}\) b) \(y = 4 + {1 \over {x - 2}}\) c) \(y = {{\sqrt {{x^2} + x} } \over {x - 1}}\) d) \(y = {{\sqrt {x + 3} } \over {x + 1}}\) Giải a) Đường thẳng \(x = -{1 \over 2}\) là tiệm cận đứng của đồ thị (khi \(x \to {\left( { - {1 \over 2}} \right)^ - }\) và \(x \to {\left( { - {1 \over 2}} \right)^ + }\). Đường thẳng \(y = {1 \over 2}\) là tiệm cận ngang của đồ thị (khi \(x \to + \infty \) và \(x \to - \infty \)) b) Đường thẳng x = 2 là tiệm cận đứng của đồ thị (khi \(x \to {2^ - }\) và \(x \to {2^ + }\)). Đường thẳng y = 4 là tiệm cận ngang của đồ thị (khi \(x \to + \infty \) và \(x \to - \infty \)) c) Vì \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } {{x\sqrt {1 + {1 \over x}} } \over {x - 1}} = \mathop {\lim }\limits_{x \to + \infty } {{\sqrt {1 + {1 \over x}} } \over {1 - {1 \over x}}} = 1\) \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } {{ - x\sqrt {1 + {1 \over x}} } \over {x - 1}} = \mathop {\lim }\limits_{x \to - \infty } {{ - \sqrt {1 + {1 \over x}} } \over {1 - {1 \over x}}} = - 1\) Nên đường thẳng y = 1 là tiệm cận ngang của đồ thị (khi \(x \to + \infty \)) và đường thẳng y = -1 là tiệm cận ngang của đồ thị (khi \(x \to - \infty \)) (h.1.8) d) Đường thẳng x = -1 là tiệm cận ngang của đồ thị (khi \(x \to {( - 1)^ - }\) và \(x \to {( - 1)^ + }\)). Đường thẳng y = 0 là tiệm cận ngang của đồ thị (khi \(x \to + \infty \)) (h1.1.9). Sachbaitap.com
Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 5. Đường tiệm cận của hàm số
|
Tìm tiệm cận đứng và tiệm cận xiên của đồ thị các hàm số sau:
a) Xác định giao điểm I của hai đường tiệm cận của đường cong