Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 1.4 trang 10 sách bài tập Giải tích 12 Nâng cao

Hãy chứng minh rằng

Hãy chứng minh rằng

a) Hàm số \(y = \sqrt {2x - {x^2}} \) nghịch biến trên đoạn [1;2]

b)  Hàm số \(y = \sqrt {{x^2} - 9} \) đồng biến trên nửa khoảng  \({\rm{[}}3; + \infty )\)

c) Hàm số \(y = x + {4 \over x}\) nghịch biến trên mỗi nửa khoảng [-2;0) và (0;2]

Giải

a) Hàm số liên tục trên đoạn [1;2] và có đạo hàm

                    \(y' = {{1 - x} \over {\sqrt {2x - {x^2}} }} < 0\) với mọi \(x \in (1,2)\)

Do đó hàm số nghịch biến trên đoạn [1;2]

b)  Hàm số liên tục trên nửa khoảng  \({\rm{[}}3; + \infty )\) và có đạo hàm

                    \(y' = {x \over {\sqrt {{x^2} - 9} }} > 0\) với mọi \(x \in (3, + \infty )\)

Do đó hàm dố đồng biến tên nửa khoảng \({\rm{[}}3; + \infty )\)

c) TXĐ: \(x\ne0\)

\(y' = 1 - {4 \over {{x^2}}}\)

\(y' = 0 \Leftrightarrow x =  \pm 2\)

BBT

Từ BBT ta có hàm số \(y = x + {4 \over x}\) nghịch biến trên mỗi nửa khoảng [-2;0) và (0;2]

 

Sachbaitap.com

Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.