Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 1.42 trang 15 sách bài tập Đại số và Giải tích 11 Nâng cao

Giải các phương trình sau:

Giải các phương trình sau:

a) \(\tan \left( {x + {\pi  \over 3}} \right) + \cot \left( {{\pi  \over 6} - 3x} \right) = 0\) 

b) \(\tan \left( {2x - {{3\pi } \over 4}} \right) + \cot \left( {4x - {{7\pi } \over 8}} \right) = 0\)

c) \(\tan \left( {2x + {\pi  \over 3}} \right).\tan \left( {x - {\pi  \over 2}} \right) = 1\)                                   

d) \(\sin 2x + 2\cot x = 3\)

Giải

a) Biến đổi phương trình đã cho như sau:

 \(\tan \left( {x + {\pi  \over 3}} \right) + \cot \left( {{\pi  \over 6} - 3x} \right) = 0\)

\(\Leftrightarrow \tan \left( {x + {\pi  \over 3}} \right) + \tan \left( {3x + {\pi  \over 3}} \right) = 0\)

\( \Leftrightarrow {{\sin \left( {4x + {{2\pi } \over 3}} \right)} \over {\cos \left( {x + {\pi  \over 3}} \right)\cos \left( {3x + {\pi  \over 3}} \right)}} = 0\)

Vậy với điều kiện \(\cos \left( {x + {\pi  \over 3}} \right) \ne 0\) và \(\cos \left( {3x + {\pi  \over 3}} \right) \ne 0\), phương trình đã cho tương đương với phương trình \(\sin \left( {4x + {{2\pi } \over 3}} \right) = 0\Leftrightarrow x =  - {\pi  \over 6} + {{k\pi } \over 4}\) Có thể thử lại điều kiện bằng cách trực tiếp. Chẳng hạn, ta có

\(\cos \left( {x + {\pi  \over 3}} \right) = \cos \left( { - {\pi  \over 6} + k{\pi  \over 4} + {\pi  \over 3}} \right) \)

\(= \cos \left( {{\pi  \over 6} + k{\pi  \over 4}} \right) \ne 0\)

b) Áp dụng công thức \(\tan a + \cot b = {{\cos \left( {a - b} \right)} \over {\cos a.\sin b}},\) ta biến đổi phương trình đã cho như sau:

\(\tan \left( {2x - {{3\pi } \over 4}} \right) + \cot \left( {4x - {{7\pi } \over 8}} \right) = 0\)

\(\Leftrightarrow {{\cos \left( {x + {{13\pi } \over 8}} \right)} \over {\cos \left( {2x - {{3\pi } \over 4}} \right)\sin \left( {4x + {{7\pi } \over 8}} \right)}} = 0\)

Do đó với điều kiện \(\cos \left( {2x - {{3\pi } \over 4}} \right) \ne 0\) và \(\sin \left( {4x + {{7\pi } \over 8}} \right) \ne 0,\) phương trình đã cho tương đương với phương trình \(\cos \left( {2x + {{13\pi } \over 8}} \right) = 0\Leftrightarrow x =  - {{9\pi } \over {16}} + k{\pi  \over 2} \)

Thử lại điều kiện bằng cách trực tiếp.

c)  Biến đổi phương trình đã cho như sau:

\(\eqalign{
& \tan \left( {2x + {\pi \over 3}} \right).\tan \left( {\pi - {x\over 2}} \right) = 1\cr& \Leftrightarrow \tan \left( {2x + {\pi \over 3}} \right) = \cot \left( { - {x \over 2}} \right) \cr
& \Leftrightarrow \tan \left( {2x + {\pi \over 3}} \right) + \cot {x \over 2} = 0\cr& \Leftrightarrow {{\cos \left( {{{3x} \over 2} + {\pi \over 3}} \right)} \over {\cos \left( {2x + {\pi \over 3}} \right)\sin {x \over 2}}} = 0 \cr} \)

Do đó, với điều kiện \(\cos \left( {2x + {\pi  \over 3}} \right) \ne 0\) và \(\sin {x \over 2} \ne 0\), phương trình đã cho tương đương với phương trình \(\cos \left( {{{3x} \over 2} + {\pi  \over 3}} \right) = 0\Leftrightarrow x = {\pi  \over 9} + k{{2\pi } \over 3}\)

Thử lại điều kiện bằng cách trực tiếp.

d) Sử dụng công thức \(\sin 2x = {{2\tan x} \over {1 + {{\tan }^2}x}},\) ta có:

\(\sin 2x + 2\cot x = 3 \Leftrightarrow {{2\tan x} \over {1 + {{\tan }^2}x}} + {2 \over {\tan x}} = 3\)

Giải tiếp phương trình này với điều kiện \(\tan x \ne 0\) ta được: \(x = {\pi  \over 4} + k\pi \)

 

sachbaitap.com

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.