Câu 15 trang 158 Sách bài tập (SBT) Toán 9 Tập 1Cho tam giác ABC, các đường cao BH và CK. Chứng minh rằng: a) Bốn điểm B, C, H, K cùng thuộc một đường tròn; Cho tam giác ABC, các đường cao BH và CK. Chứng minh rằng: a) Bốn điểm B, C, H, K cùng thuộc một đường tròn; b) HK < BC. Giải:
a) Gọi I là trung điểm của BC Tam giác BCH vuông tại H có HI là đường trung tuyến nên: \(HI= {1 \over 2}BC\) (tính chất tam giác vuông) Tam giác BCK vuông tại K có KI là đường trung tuyến nên: \(KI = {1 \over 2}BC\) (tính chất tam giác vuông) Suy ra: IB = IC = IH = IK. Vậy bốn điểm B, C, H, K cùng nằm trên một đường tròn tâm I bán kính bằng \({1 \over 2}BC\). b) Trong đường tròn tâm I ta có KH là dây cung không đi qua tâm, BC là đường kính nên: KH < BC. Sachbaitap.com
Xem lời giải SGK - Toán 9 - Xem ngay >> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 2. Đường kính và dây của đường tròn
|
a) Chứng minh rằng bốn điểm A, B, C, D cùng thuộc một đường tròn.
Cho nửa đường tròn tâm O, đường kính AB và dây EF không cắt đường kính. Gọi I và K lần lượt là chân các đường vuông góc kẻ từ A và B đến EF. Chứng minh rằng IE = KF.
Cho đường tròn (O) có bán kính OA = 3cm. Dây BC của đường tròn vuông góc với OA tại trung điểm của OA. Tính độ dài BC.
Cho đường tròn (O), đường kính AD = 2R. Vẽ cung tâm D bán kính R, cung này cắt đường tròn (O) ở B và C.