Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 21 trang 9 Sách bài tập (SBT) Toán 9 tập 2

Tìm giá trị của m.

Tìm giá trị của m:

a) Để hai đường thẳng (d1): \(5x - 2y = 3,\) (d2): \(x + y = m\) cắt nhau tại một điểm trên trục Oy. Vẽ hai đường thẳng này trong cùng một mặt phẳng tọa độ.

b) Để hai đường thẳng (d1): \(mx + 3y = 10\), (d2): \(x - 2y = 4\) cắt nhau tại một điểm trên trục Ox. Vẽ hai đường thẳng này trong cùng  một mặt phẳng tọa độ.

Giải

a) Đường thẳng (d1): \(5x - 2y = 3,\) (d2): \(x + y = m\) cắt nhau tại một điểm trên trục tung nên giao điểm có hoành độ bằng 0.

Ta có: B(0; y) là nghiệm của hệ phương trình:

\(\left\{ {\matrix{
{5.0 - 2y = 3} \cr
{0 + y = m} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{y = - {3 \over 2}} \cr 
{m = - {3 \over 2}} \cr} } \right.\)

Vậy \(m =  - {3 \over 2}\) thì (d1) cắt (d2) tại một điểm trên trục tung.

(d2): \(x + y =  - {3 \over 2}\)

Vẽ (d2): Cho \(x = 0 \Rightarrow y =  - {3 \over 2}\left( {0; - {3 \over 2}} \right)\)

Cho \(y = 0 \Rightarrow x =  - {3 \over 2}\left( { - {3 \over 2};0} \right)\)

Vẽ (d1): \(5x - 2y = 3\)

Cho \(x = 0 \Rightarrow y =  - {3 \over 2}\left( {0; - {3 \over 2}} \right)\)

Cho \(y = 0 \Rightarrow x = {3 \over 5}\left( {{3 \over 5};0} \right)\)

b) Đường thẳng (d1): mx + 3y = 10 và đường thẳng (d2): x – 2y = 4 cắt nhau tại một điểm trên trục hoành nên tung độ giao điểm bằng 0.

Ta có: A(x; 0) là nghiệm của hệ phương trình:

\(\eqalign{
& \left\{ {\matrix{
{mx + 3.0 = 10} \cr
{x - 2.0 = 4} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{mx = 10} \cr 
{x = 4} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{m = {5 \over 2}} \cr 
{x = 4} \cr} } \right. \cr} \)

Vậy \(m = {5 \over 2}\) thì (d1) cắt (d2) tại 1 điểm trên trục hoành.

(d1): \({5 \over 2}x + 3y = 10 \Leftrightarrow 5x + 6y = 20\)

Vẽ (d1): Cho  \(x = 0 \Rightarrow y = {{10} \over 3}\left( {0;{{10} \over 3}} \right)\)

Cho \(y = 0 \Rightarrow x = 4\left( {4;0} \right)\)

Vẽ \(\left( {{d_2}} \right):x - 2y = 4\)

Cho \(x = 0 \Rightarrow y =  - 2\left( {0; - 2} \right)\)

Cho \(y = 0 \Rightarrow x = 4\left( {4;0} \right)\).

Sachbaitap.com

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.