Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 2.105 trang 87 sách bài tập Giải tích 12 Nâng cao

Cho a >1, b >1.Chứng minh rằng, nếu phương trình

a) Cho a >1, b >1.Chứng minh rằng, nếu phương trình \({a^x} + {b^x} = c\) có nghiệm \({x_0}\) thì nhiệm đó là duy nhất.

b) Chứng minh kết quả tương tự với trường hợp 0< a < 1 và 0

Giải

a) Khi a >1, b >1 thì các hàm số \(y = {a^x}\), \(y = {b^x}\) đồng biến.

Với \(x > {x_0}\) ta có \({a^x} > {a^{{x_0}}};{b^x} > {b^{{x_0}}}\). Vì vậy  \({a^x} + {b^x} > {a^{{x_0}}} + {b^{{x_0}}} = c\)

Với \(x < {x_0}\) ta có \({a^x} < {a^{{x_0}}};{b^x} < {b^{{x_0}}}\). Vì vậy \({a^x} + {b^x} < {a^{{x_0}}} + {b^{{x_0}}} = c\)

Do đó phương trình \({a^x} + {b^x} = c\) có nghiệm \({x_0}\) thì nghiệm đó là duy nhất.

 b) Cách giải tương tự như câu a), với lưu ý khi \(0 < a < 1,0 < b < 1\) thì các hàm số \(y = {a^x},y = {b^x}\)nghịch biến.

Câu a) và b) được minh họa bởi các ví dụ sau:

                                \({4^x} + {6^x} = {13.2^x} \Leftrightarrow {2^x} + {3^x} = 13\) có nghiệm duy nhất \(x = 2\)

                                 \({16^x} + {9^x} = {25^x} \Leftrightarrow {\left( {{{16} \over {25}}} \right)^x} + {\left( {{9 \over {25}}} \right)^x} = 1\) có nghiệm duy nhất \(x = 1\)

Sachbaitap.com

Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.