Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 2.106 trang 87 sách bài tập Giải tích 12 Nâng cao

Giải các phương trình sau:

Giải các phương trình sau:

a) \({2^{{{\cos }^2}x}} + {4.2^{{{\sin }^2}x}} = 6\)

b) \({3^{2\sin x + 2\cos x + 1}} - {\left( {{1 \over {15}}} \right)^{ - \cos x - \sin x{\rm{ - lo}}{{\rm{g}}_{15}}8}} \)

\(+ {5^{^{2\sin x + 2\cos x + 1}}} = 0.\)

Giải

a) Đặt \(t = {2^{{\rm{co}}{{\rm{s}}^2}x}}\left( {1 \le t \le 2} \right)\), ta được phương trình \({t^2} - 6t + 8 = 0\).

Giải ra ta được \(t = 4\) (loại) và \(t = 2\)  

Với \(t=2\) ta có:

\({2^{{{\cos }^2}x}} = 2 \Leftrightarrow {\cos ^2}x = 1 \)

\(\Leftrightarrow \sin x = 0 \Leftrightarrow x = k\pi (k \in Z)\)

b) \(x = {{3\pi } \over 4} + k\pi ;x = \pi  + k2\pi \left( {k \in Z} \right)\)

Biến đổi phương trình về dạng

                                \({3.3^{2\left( {\sin x + \cos x} \right)}} - {8.15^{\cos x + \sin x}} + {5.5^{2\left( {\sin x + \cos x} \right)}} = 0.\)

Chia cả hai vế của phương trình cho \({3^{2\left( {\sin x + \cos x} \right)}}\), rồi đặt \(t = {\left( {{5 \over 3}} \right)^{{\rm{cos}}x + {\mathop{\rm s}\nolimits} {\rm{in}}x}}\) với \(\left( {t > 0} \right)\) dẫn đến phương trình:

                                \(5{t^2} - 8t + 3 = 0\)

Giải ra ta được \(t = 1\)  và \(t = {3 \over 5}\)

- Với \(t = 1\) ta có \({\left( {{5 \over 3}} \right)^{{\rm{cos}}x + {\mathop{\rm s}\nolimits} {\rm{in}}x}} = 1\), dẫn đến \({\rm{cos}}x + \sin x = 0\) hay \({\rm{cos}}\left( {x - {\pi  \over 4}} \right) = 0\)

Do vậy \(x = {{3\pi } \over 4} + k\pi \left( {k \in Z} \right)\)

- Với \(t = {3 \over 5}\) ta có \({\left( {{5 \over 3}} \right)^{{\rm{cos}}x + {\mathop{\rm s}\nolimits} {\rm{in}}x}} = {3 \over 5}\), dẫn đến \({\rm{cos}}x + \sin x =  - 1\) hay \({\rm{cos}}\left( {x - {\pi  \over 4}} \right) =  - {1 \over {\sqrt 2 }}\)

Do vậy \(x = \pi  + k2\pi ;x = {-\pi  \over 2} + k2\pi \left( {k \in Z} \right)\)

Sachbaitap.com

Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.