Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 2.112 trang 88 sách bài tập Giải tích 12 Nâng cao

Giải các hệ phương trình sau

a)\(\left\{ \matrix{ x + y = 11 \hfill \cr{\log _2}x + {\log _2}y = 1 + {\log _2}15 \hfill \cr}  \right.\)                                   b) \(\left\{ \matrix{ \log ({x^2} + {y^2}) = 1 + \log 8 \hfill \cr\log (x + y) - log(x - y) = \log 3; \hfill \cr}  \right.\) 

Giải         

a) Điều kiện \(x > 0,y > 0\)

Biến đổi phương trình thứ hai trong hệ như sau:

\({\log _2}x + {\log _2}y = 1 + {\log _2}15 \Leftrightarrow {\log _2}xy = {\log _2}30\)

\( \Leftrightarrow xy = 30\)

\(\left( {x;y} \right)\) là \(\left( {5;6} \right),\left( {6;5} \right)\)

b) Điều kiện \(x + y > 0,x - y > 0\)

Biến đổi phương trình thứ nhất và phương trình thứ hai trong hệ như sau:

\(\eqalign{& \log ({x^2} + {y^2}) = 1 + \log 8 \Leftrightarrow \log ({x^2} + {y^2}) = \log 80\cr&\Leftrightarrow  {x^2} + {y^2}=80\cr& log(x + y) - log(x - y) = \log 3\cr& \Leftrightarrow \log {{x + y} \over {x - y}} = \log 3\cr& \Leftrightarrow {{x + y} \over {x - y}} = 3 \cr} \)

Vậy \(\left( {x;y} \right) = \left( {8;4} \right)\)

Sachbaitap.com

 

Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.