Câu 2.113 trang 88 sách bài tập Giải tích 12 Nâng caoGiải các hệ phương trình sau a)\(\left\{ \matrix{{3^x}{.2^y} = 972 \hfill \cr{\log _{\sqrt 3 }}(x - y) = 2; \hfill \cr} \right.\) b) \(\left\{ \matrix{ x + y = 25 \hfill \cr{\log _2}x - {\log _2}y = 2 \hfill \cr} \right.\) Giải a) \(\left\{ \matrix{{3^x}{.2^y} = 972 \hfill \cr{\log _{\sqrt 3 }}(x - y) = 2 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{{3^x}{.2^y} = 972 \hfill \cr x - y = 3 \hfill \cr} \right.\) \(\Leftrightarrow \left\{ \matrix{ x = y + 3 \hfill \cr{3^{y+3}}{.2^y} = 972 \hfill \cr} \right.\) \( \Leftrightarrow \left\{ \matrix{x = y + 3 \hfill \cr{6^y} = 36 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{x = 5 \hfill \cr y = 2 \hfill \cr} \right.\) b) Biến đổi phương trình thứ hai trong hệ thành \({x \over y} = 4\left( {x > 0,y > 0} \right)\) Vậy \(\left( {x;y} \right) = \left( {20;5} \right)\) Sachbaitap.com
Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 8. Phương trình mũ và lôgarit
|