Câu 2.115 trang 88 sách bài tập Giải tích 12 Nâng caoGiải các hệ phương trình sau a)\(\left\{ \matrix{{2^x} + {5^{x + y}} = 7 \hfill \cr {2^{x - 1}}{.5^{x + y}} = 5 \hfill \cr} \right.\) b) \(\left\{ \matrix{{x^2} - {y^2} = 3 \hfill \cr {\log _3}\left( {x + y} \right) - {\log _5}\left( {x - y} \right) = 1 \hfill \cr} \right.\) Giải a) Đặt \(u = {2^x},v = {5^{x + y}}(u > 0,v > 0)\), ta có hệ: \(\left\{ \matrix{u + v = 7 \hfill \cr uv = 10 \hfill \cr} \right.\) Vậy \(\left( {x;y} \right)\) là \(\left( {{{\log }_2}5;{{\log }_5}2 - {{\log }_2}5} \right),\left( {1;0} \right)\) b) ĐKXĐ: \(x \pm y > 0\) . Khi đó \(\left\{ \matrix{{x^2} - {y^2} = 3 \hfill \cr{\log _3}\left( {x + y} \right) - {\log _5}\left( {x - y} \right) = 1 \hfill \cr} \right. \) \(\Leftrightarrow \left\{ \matrix{{\log _3}\left( {x + y} \right) + {\log _3}\left( {x - y} \right) = 1 \hfill \cr{\log _3}\left( {x + y} \right) - {{{{\log }_3}\left( {x - y} \right)} \over {{{\log }_3}5}} = 1 \hfill \cr} \right.\) Tiếp theo, đặt \(u = {\log _3}\left( {x + y} \right)\) và \(v = {\log _3}\left( {x - y} \right) = 1\) , ta có hệ \(\left\{ \matrix{u + v = 1 \hfill \cr u - {v \over {{{\log }_3}5}} = 1 \hfill \cr} \right.\) Giải hệ ta được \(\left( {x;y} \right) = \left( {2;1} \right)\) Scahbaitap.com
Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 8. Phương trình mũ và lôgarit
|