Câu 2.2 trang 6 Sách bài tập (SBT) Toán 8 tập 1Chứng minh rằng giá trị của biểu thức Chứng minh rằng giá trị của biểu thức \(\left( {n - 1} \right)\left( {3 - 2n} \right) - n\left( {n + 5} \right)\) chia hết cho 3 với mọi giá trị của n Giải: \(\left( {n - 1} \right)\left( {3 - 2n} \right) - n\left( {n + 5} \right)\)\( = 3n - 2{n^2} - 3 + 2n - {n^2} - 5n\) \( = - 3{n^2} - 3 = - 3\left( {{n^2} + 1} \right)\) Vậy biểu thức chia hết cho 3 với mọi giá trị của n
Xem lời giải SGK - Toán 8 - Xem ngay >> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 2. Nhân đa thức với đa thức
|
Cho a và b là hai số tự nhiên. Biết a chia cho 3 dư 1;b chia cho 3 dư 2. Chứng minh rằng ab chia cho 3 dư 2