| Câu 8 trang 6 Sách bài tập (SBT) Toán 8 tập 1Chứng minh: Chứng minh: a. \(\left( {x - 1} \right)\left( {{x^2} + x + 1} \right) = {x^3} - 1\) b. \(\left( {{x^3} + {x^2}y + x{y^2} + {y^3}} \right)\left( {x - y} \right) = {x^4} - {y^4}\) Giải: a. Biến đổi vế trái: \(\left( {x - 1} \right)\left( {{x^2} + x + 1} \right) = {x^3} + {x^2} + x - {x^2} - x - 1 = {x^3} - 1\) Vế trái bằng vế phải vậy đẳng thức được chứng minh b. Biến đổi vế trái: \(\left( {{x^3} + {x^2}y + x{y^2} + {y^3}} \right)\left( {x - y} \right) = {x^4} + {x^3}y + {x^2}{y^2} + x{y^3} - {x^3}y - {x^2}{y^2} - x{y^3} - {y^4} = {x^4} - {y^4}\) Vế trái bằng vế phải vậy đẳng thức được chứng minh. 
 Xem lời giải SGK - Toán 8 - Xem ngay >> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link 
 
                                                    Xem thêm tại đây: 
                                                                                                            Bài 2. Nhân đa thức với đa thức					
                                                                                                         | 
 
                                        
                                        Cho a và b là hai số tự nhiên. Biết a chia cho 3 dư 1;b chia cho 3 dư 2. Chứng minh rằng ab chia cho 3 dư 2
 
                                        
                                        Chứng minh rằng biểu thức n(2n−3)−2n(n+1) luôn chia hết cho 5 với mọi số nguyên n.