Câu 23 trang 118 Sách bài tập Hình học 11 Nâng caoGiải bài tập Câu 23 trang 118 Sách bài tập Hình học 11 Nâng cao Cho tứ diện ABCD có \(C{\rm{D}} = {4 \over 3}AB\). Gọi I, J, K lần lượt là trung điểm của BC, AC, BD. Cho biết \(JK = {5 \over 6}AB\), tính góc giữa đường thẳng CD với các đường thẳng IJ và AB. Trả lời:
Ta có: \(\eqalign{ & IJ = {1 \over 2}AB \cr & IK = {1 \over 2}CD = {2 \over 3}AB \cr & I{J^2} + I{K^2} = {1 \over 4}A{B^2} + {4 \over 9}A{B^2} \cr & = {{25} \over {36}}A{B^2} \cr} \) mà \(I{K^2} = {{25} \over {36}}A{B^2}\) nên \(I{J^2} + I{K^2} = J{K^2}\) Vậy \(JI \bot IK\) . Do IJ // AB, IK // CD nên góc giữa AB và CD bằng 90° Mặt khác IJ // AB mà AB ⊥ CD nên IJ ⊥ CD Vậy góc giữa IJ và CD bằng 90°. Sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả. |
Giải bài tập Câu 24 trang 118 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 25 trang 119 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 26 trang 119 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 27 trang 119 Sách bài tập Hình học 11 Nâng cao