Câu 26 trang 55 Sách bài tập Hình học 11 nâng cao.Cho hình chóp tứ giác S.ABCD có đáy là hình chữ nhật. Gọi M, N, E, F lần lượt là trọng tâm của các tam giác SAB, SCD và SDA. 26. Trang 55 Sách bài tập Hình học 11 nâng cao. Cho hình chóp tứ giác S.ABCD có đáy là hình chữ nhật. Gọi M, N, E, F lần lượt là trọng tâm của các tam giác SAB, SBC, SCD và SDA. Chứng minh rằng: a) Bốn điểm M, N, E, F đồng phẳng. b) Tứ giác MNEF là hình thoi. c) Ba đường thẳng ME, NF và SO đồng quy (O là giao điểm của AC và BD). Giải Gọi M’, N’, E’, F’ lần lượt là giao điểm của các cặp đường thẳng SM và AB, SN và BC, SE và CD, SF và DA. Khi đó M’, N’, E’, F’ lần lượt là trung điểm của cạnh AB, BC, CD, DA. Vì M, N lần lượt là trọng tâm của các tam giác SAB và SBC nên: \({{SM} \over {SM'}} = {{SN} \over {SN'}} = {2 \over 3} \) \(\Rightarrow MN// M'N'\) và \(MN = {2 \over 3}M'N'\) (1) Chứng minh tương tự, ta có: \(EF//E'F'\,\,\text{và}\,\,EF = {2 \over 3}\)E'F' (2) NE // N’E’ và \(NE = {2 \over 3}N'F'\,\,(3)\) MF // M’F’ và \(MF = {2 \over 3}M'F'\,\,\,(4)\) a) M’N’ là đường trung bình của tam giác BAC suy ra: M’N’//AC và \(M'N' = {1 \over 2}AC\,\,\,(5)\) Tương tự: E’F’ // AC và \(E'F' = {1 \over 2}AC\,\,\,(6)\) Từ (5) và (6) suy ra M’N’ //E’F’ và \(M'N' = E'F' = {1 \over 2}AC\,\,\,(7)\) Từ (1), (2), (7) suy ra MN // EF. Vậy bốn điểm M, N, E, F đồng phẳng. b) Lí luận tương tự như câu a), ta suy ra: N’E’ // M’F’ và \(N'E' = M'F' = {1 \over 2}BD.\) Từ (1), (2), (3), (4), (7), (8) và AC = BD suy ra: \(MN = NE = EF = FM = {1 \over 3}AC.\) Vậy tứ giác MNEF là một hình thoi. c) Dễ thấy O cũng là giao điểm của M’E’ và N’F’. Xét ba mặt phẳng (M’SE’), (N’SF’) và (MNEF). Ta có: \(\eqalign{ Vậy theo định lí về giao tuyến của ba mặt phẳng thì ba đường thẳng SO, ME và NF đồng quy. sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 2: Hai đường thẳng song song
|
Cho tứ diện ACBD. Gọi I và J lần lượt là trung điểm của BC và BD; E là một điểm thuộc cạnh AD khác với A và D.
Cho hình chóp S.ABCD có đáy là một tứ giác lồi. Gọi M và N lần lượt là trọng tâm của tam giác SAB và SAD; E là trung điểm của CB.
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M và N lần lượt là trung điểm của CD và AB.