Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 3.20 trang 89 sách bài tập Đại số và Giải tích 11 Nâng cao

Chứng minh rằng dãy số

Chứng minh rằng dãy số \(({v_n}),\) với \({v_n} = {{{n^2} + 1} \over {2{n^2} - 3}},\) là một dãy số bị chặn.

Giải

 Viết lại công thức xác định \({v_n}\) dưới dạng

                                \({v_n} = {1 \over 2} + {5 \over {2.\left( {2{n^2} - 3} \right)}}\)              (1)

Dễ thấy \(\forall n \ge 1,\) ta có \( - 1 \le {1 \over {2{n^2} - 3}} < {1 \over 5}.\) Do đó, từ (1) suy ra \( - 2 \le {v_n} \le 1\,\,\left( {\forall n \ge 1} \right).\) Vì vậy, \(({v_n})\) là một dãy số bị chặn.

sachbaitap.com

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.

Xem thêm tại đây: Bài 2. Dãy số