Câu 3.21 trang 89 sách bài tập Đại số và Giải tích 11 Nâng caoChứng minh rằng dãy số Chứng minh rằng dãy số \(({u_n}),\) với \({u_n} = {{7n + 5} \over {5n + 7}},\) là một dãy số tăng và bị chặn. Giải Viết lại công thức xác định \({u_n}\) dưới dạng \({u_n} = {7 \over 5} - {{24} \over {5.\left( {5n + 7} \right)}}\) Từ đó, suy ra \({u_{n + 1}} - {u_n} = {{24} \over 5} \times \left( {{1 \over {5n + 7}} - {1 \over {5\left( {n + 1} \right) + 7}}} \right) > 0\,\,\,\left( {\forall n \ge 1} \right)\) Và \(1 \le {u_n} \le {7 \over 5}\,\,\left( {\forall n \ge 1} \right),\,\,\,\left( {do\,\,0 < {1 \over {5n + 7}} \le {1 \over {12}}} \right)\) Vì thế, \(\left( {{u_n}} \right)\) là một dãy số tăng và bị chặn. sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
Xem thêm tại đây:
Bài 2. Dãy số
|