Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 33 trang 83 Sách bài tập (SBT) Toán 8 tập 1

Hình thang cân ABCD có đường chéo DB vuông góc với cạnh bên BC, BD là tia phân giác của góc D. Tính chu vi của hình thang, biết BC = 3cm.

Hình thang cân ABCD có đường chéo DB vuông góc với cạnh bên BC, BD là tia phân giác của góc D. Tính chu vi của hình thang, biết BC = 3cm.

Giải:

Ta có: AD = BC = 3 (cm)  (tính chất hình thang cân)

\(\widehat {ABD} = \widehat {BDC}\) (so le trong)

\(\eqalign{
& \widehat {ADB} = \widehat {BDC}(gt) \cr
& \Rightarrow \widehat {ABD} = \widehat {ADB} \cr} \)

⇒ ∆ ABD cân tại A

⇒ AB = AD = 3 (cm)

∆ BDC vuông tại B

\( \Rightarrow \widehat {BDC} + \widehat C = {90^0}\)

\(\widehat {ADC} = \widehat C\) (gt)

Mà \(\widehat {BDC} = {1 \over 2}\widehat {ADC}\) nên  \(\widehat {BDC} = {1 \over 2}\widehat C\)

\(\widehat C + {1 \over 2}\widehat C = {90^0} \Rightarrow \widehat C = {60^0}\)

Từ B kẻ đường thẳng song song AD cắt CD tại E.

Hình thang ABED có hai cạnh bên song song nên AB = DE và AD = BE

⇒ DE = 3 (cm), BE = 3 (cm)

\(\widehat {BEC} = \widehat {ADC}\)  (đồng vị )

Suy ra:  \(\widehat {BEC} = \widehat C\)

⇒ ∆ BEC cân tại B có \(\widehat C = {60^0}\)

⇒ ∆ BEC đều

⇒ EC = BC = 3 (cm)

CD = CE + ED = 3 + 3 = 6 (cm)

Chu vi hình thang ABCD bằng:

AB + BC + CD + DA = 3+3 +6 +3=15 (cm)

Sachbaitap.com

Xem lời giải SGK - Toán 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.

Xem thêm tại đây: Bài 3. Hình thang cân