Câu 40 trang 84 Sách bài tập (SBT) Toán 8 tập 1Cho tam giác ABC, các đường trung tuyến BD, CE. Gọi M, N theo thứ tự là trung điểm của BE, CD. Gọi I, K theo thứ tự là giao điểm của MN với BD, CE. Chứng minh rằng MI = IK = KN. Cho tam giác ABC, các đường trung tuyến BD, CE. Gọi M, N theo thứ tự là trung điểm của BE, CD. Gọi I, K theo thứ tự là giao điểm của MN với BD, CE. Chứng minh rằng MI = IK = KN. Giải:
Trong tam giác ABC ta có: E là trung điểm của cạnh AB D là trung điểm của cạnh AC Nên ED là đường trung bình của ∆ ABC \( \Rightarrow ED//BC\) và \(ED = {1 \over 2}BC\) (tính chất đường trung bình của tam giác) Trong hình thang BCDE, ta có: BC // DE M là trung điểm cạnh bên BE N là trung điểm cạnh bên CD Nên MN là đường trung bình hình thang BCDE ⇒ MN // DE \(MN = {{DE + BC} \over 2} = {{{{BC} \over 2} + BC} \over 2} = {{3BC} \over 4}\) (tính chất đường trung bình hình thang) Trong tam giác BED ta có: M là trung điểm của BE MI // DE Suy ra: MI là đường trung bình của ∆ BED \( \Rightarrow MI = {1 \over 2}DE = {1 \over 4}BC\) (tính chất đường trung bình tam giác) Trong tam giác CED ta có: N là trung điểm của CD NK // DE Suy ra: NK là đường trung bình của ∆ CED \( \Rightarrow NK = {1 \over 2}DE = {1 \over 4}BC\) (tính chất đường trung bình tam giác) \(\eqalign{ Sachbaitap.com
Xem lời giải SGK - Toán 8 - Xem ngay >> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 4. Đường trung bình của tam giác, của hình thang
|
Chứng minh rằng đường thẳng đi qua trung điểm một cạnh bên của hình thang và song song với hai đáy thì đi qua trung điểm của hai đường chéo và đi qua trung điểm của cạnh bên thứ hai.
Chứng minh rằng trong hình thang mà hai đáy không bằng nhau, đoạn thẳng nối trung điểm của hai đường chéo bằng nửa hiệu hai đáy.
Hình thang ABCD có AB // CD, AB = a, BC = b, CD = c, DA = d. Các đường phân giác của các góc ngoài đỉnh A và D cắt nhau tại M, các đường phân giác của các góc ngoài đỉnh B và C cắt nhau tại N.
Cho tam giác ABC, đường trung tuyến AM. Gọi O là trung điểm của AM. Qua O kẻ đường thẳng d cắt các cạnh AB và AC. Gọi AA’, BB’, CC’ là các đường vuông góc kẻ từ A, B, C đến đường thẳng d. Chứng minh rằng: