Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 4.17 trang 105 SBT Đại số 10 Nâng cao

Giải bài tập Câu 4.17 trang 105 SBT Đại số 10 Nâng cao.

Cho ba số không âm a, b, c. Chứng minh các bất đẳng thức sau và chỉ rõ đẳng thức xảy ra khi nào :

a. \(\left( {{\rm{a}} + b} \right)\left( {{\rm{a}}b + 1} \right) \ge 4{\rm{a}}b;\)

b. \(\left( {{\rm{a}} + b + c} \right)\left( {{\rm{a}}b + bc + ca} \right) \ge 9{\rm{a}}bc.\)

Giải:

a. Với \(a ≥ 0, b ≥ 0\) ta có

\(a + b \ge 2\sqrt {ab}  \ge 0;ab + 1 \ge 2\sqrt {{\rm{a}}b}  \ge 0.\)

Từ đó suy ra \(\left( {{\rm{a}} + b} \right)\left( {{\rm{a}}b + 1} \right) \ge 2\sqrt {{\rm{a}}b} .2\sqrt {{\rm{a}}b}  = 4{\rm{a}}b.\)

Đẳng thức xảy ra khi và chỉ khi a = b = 1.

b. Với \(a ≥ 0, b≥ 0, c ≥ 0\), ta có :

\(\begin{array}{l}a + b + c \ge 3\sqrt[3]{{abc}} \ge 0\\ab + bc + ca \ge 3\sqrt[3]{{{a^2}{b^2}{c^2}}} \ge 0.\end{array}\)

Từ đó suy ra

\(\left( {{\rm{a}} + b + c} \right)\left( {{\rm{a}}b + bc + ca} \right) \ge 3\sqrt[3]{{abc}}.3\sqrt[3]{{{a^2}{b^2}{c^2}}}\)

\(= 9{\rm{a}}bc\)

Đẳng thức xảy ra khi và chỉ khi \(a = b = c\).

Sachbaitap.com