Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 4.37 trang 139 sách bài tập Đại số và Giải tích 11 Nâng cao

Cho dãy số xác định bởi

Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi

\(\left\{ \matrix{
{u_1} = 3 \hfill \cr
2{u_{n + 1}} = {u_n} + 1 \hfill \cr} \right.\)

Gọi \(\left( {{v_n}} \right)\) là dãy số xác định bởi

                        \({v_n} = {u_n} - 1\) với mọi n

a) Chứng minh rằng \(\left( {{v_n}} \right)\) là một cấp số nhân lùi vô hạn.

b) Gọi \({S_n}\) là tổng số hạng đầu tiên của dãy số \(\left( {{u_n}} \right)\). Tìm \(\lim {S_n}\)

Giải

a) Với mọi n, ta có

\({v_{n + 1}} = {u_{n + 1}} - 1 = {{{u_n} + 1} \over 2} - 1 = {{{u_n} - 1} \over 2} = {1 \over 2}{v_n}.\)        

Vậy dãy số \(\left( {{v_n}} \right)\) là một cấp số nhân với công bội \(q = {1 \over 2}.\)

b) Ta có

\(\eqalign{
 {S_n}& = {u_1} + {u_2} + ... + {u_n} \cr&= \left( {{v_1} + 1} \right) + \left( {{v_2} + 1} \right) + ... + \left( {{v_n} + 1} \right) \cr
& = \left( {{v_1} + {v_2} + ... + {v_n}} \right) + n = {s_n} + n, \cr} \)

Trong đó \({s_n}\) là tổng của n số hạng đầu tiên của cấp số nhân lùi vô hạn \(\left( {{v_n}} \right)\). Tổng của cấp số nhân \(\left( {{v_n}} \right)\) là

                  \(s = \lim {s_n} = {{{v_1}} \over {1 - q}} = {2 \over {1 - {1 \over 2}}} = 4.\)

Do đó

                     \(\lim {S_n} = \lim \left( {{s_n} + n} \right) =  + \infty \).

Sachbaitap.com

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.