Câu 44 trang 163 Sách bài tập (SBT) Toán 9 Tập 1Cho tam giác ABC vuông tại A. Vẽ đường tròn (B ; BA) và đường tròn (C ; CA), chúng cắt nhau tại điểm D (khác A). Chứng minh rằng CD là tiếp tuyến của đường tròn (B). Cho tam giác ABC vuông tại A. Vẽ đường tròn (B ; BA) và đường tròn (C ; CA), chúng cắt nhau tại điểm D (khác A). Chứng minh rằng CD là tiếp tuyến của đường tròn (B). Giải:
Xét hai tam giác ABC và DBC, ta có: BA = BD (bán kính của (B; BA)) CA = CD (bán kính của (C; CA)) BC chung Suy ra: ∆ABC = ∆DBC (c.c.c) Suy ra: \(\widehat {BAC} = \widehat {BDC}\) Mà \(\widehat {BAC} = 90^\circ \) (gt) \( \Rightarrow \widehat {BDC} = 90^\circ \) Suy ra: CD ⊥ BD tại D Vậy CD là tiếp tuyến của đường tròn (B; BA). Sachbaitap.com
Xem lời giải SGK - Toán 9 - Xem ngay >> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
|
Cho tam giác ABC cân tại A, các đường cao AD và BE cắt nhau tại H. Vẽ đường tròn (O) có đường kính AH. Chứng minh rằng:
Cho góc nhọn xOy, điểm A thuộc tia Ox. Dựng đường tròn tâm I tiếp xúc với Ox tại A và có tâm I nằm trên tia Oy.
Cho đường tròn (O) và đường thẳng d không giao nhau. Dựng tiếp tuyến của đường tròn (O) sao cho tiếp tuyến đó song song với d.