Câu 4.4 trang 177 sách bài tập Giải tích 12 Nâng caoCác điểm a) Các điểm A, B, C và A’, B’, C’ trong mặt phẳng phức theo thứ tự biểu diễn các số \(1 - i\), \(2 + 3i\), \(3 + i\) và \(3i\), \(3 - 2i\), \(3 + 2i\) Chứng minh rằng hai tam giác ABC và A’B’C’ có cùng trọng tâm. b) Biết các số phức \({z_1},{z_2},{z_3}\) biểu diễn bởi ba đỉnh nào đó của một hình bình hành trong mặt phẳng phức, hãy tìm số biểu diễn bởi đỉnh còn lại. Giải a) \(\overrightarrow {AB} \) biểu diễn \(1 + 4i\), \(\overrightarrow {AC} \) biểu biễn \(2 + 2i\), nên A, B, C không thẳng hàng và trọng tâm G thỏa mãn \(\overrightarrow {OG} = {1 \over 3}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} } \right)\) nên G biểu diễn số \({1 \over 3}\left( {6 + 3i} \right)=2+i\) \(\overrightarrow {A'B'} \) biểu diễn \(3 - 5i\), \(\overrightarrow {A'C'} \) biểu diễn \(3 - i\), nên A’, B’, C’ không thẳng hàng và trọng tâm G’ thỏa mãn \(\overrightarrow {OG'} = {1 \over 3}\left( {\overrightarrow {OA'} + \overrightarrow {OB'} + \overrightarrow {OC'} } \right)\) nên G’ biểu diễn số \(2 + i\) Vậy G trùng G’ b) \({z_1} + {z_2} - {z_3},{z_2} + {z_3} - {z_1},{z_3} + {z_1} - {z_2}\) Sachbaitap.com
Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 1. Số phức
|
Gọi M, M’ theo thứ tự là các điểm của mặt phẳng phức biểu diễn số
Cho A, B là hai điểm trong mặt phẳng phức theo thứ tự biểu diễn các số phức
Cho A, B, C, D là bốn điểm trong mặt phẳng phức biểu diễn theo thứ tự các số: