Câu 4.48 trang 142 sách bài tập Đại số và Giải tích 11 Nâng caoCho hàm số Cho hàm số \(f\left( x \right) = \left\{ \matrix{ Tìm \(\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right),\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right),\) và \(\mathop {\lim }\limits_{x \to 3} f\left( x \right)\) (nếu có). Giải \(\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ + }} \sqrt {{x^2} - 9} = 0;\) \(\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ - }} \sqrt {9 - {x^2}} = 0.\) Do đó \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = 0.\) Sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
Xem thêm tại đây:
Bài 5. Giới hạn một bên
|