Câu 4.56 trang 143 sách bài tập Đại số và Giải tích 11 Nâng caoTìm các giới hạn sau Tìm các giới hạn sau a) \(\mathop {\lim }\limits_{x \to 3} \left( {{1 \over x} - {1 \over 3}} \right){1 \over {{{\left( {x - 3} \right)}^3}}}\) b) \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} {{4{x^4} - 3} \over {2{x^2} + 3x - 2}}\) Giải a) Với mọi \(x \ne 3,\) \(\left( {{1 \over x} - {1 \over 3}} \right){1 \over {{{\left( {x - 3} \right)}^3}}} = {{3 - x} \over {3x}}.{1 \over {{{\left( {x - 3} \right)}^3}}} = \left( { - {1 \over {3x}}} \right).{1 \over {{{\left( {x - 3} \right)}^2}}}.\) Vì \(\mathop {\lim }\limits_{x \to 3} \left( { - {1 \over {3x}}} \right) = - {1 \over 9} < 0\) và \(\mathop {\lim }\limits_{x \to 3} {1 \over {{{\left( {x - 3} \right)}^2}}} = + \infty \) nên \(\mathop {\lim }\limits_{x \to 3} \left( {{1 \over x} - {1 \over 3}} \right){1 \over {{{\left( {x - 3} \right)}^3}}} = - \infty ;\) b) \({{4{x^4} - 3} \over {2{x^2} + 3x - 2}} = {{4{x^4} - 3} \over {2x - 1}}.{1 \over {x + 2}}\) Vì \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} {{4{x^4} - 3} \over {2x - 1}} = {{ - 61} \over 5} < 0\) và \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} {1 \over {x + 2}} = + \infty \) nên \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} {{4{x^4} - 3} \over {2{x^2} + 3x - 2}} = - \infty .\) Cách giải khác Vì \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} \left( {4{x^4} - 3} \right) = 61 > 0,\) \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} \left( {2{x^2} + 3x - 2} \right) = 0\) và \(2{x^2} + 3x - 2 < 0\) Với \( - 2 < x < {1 \over 2}\) nên \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} {{4{x^4} - 3} \over {2{x^2} + 3x - 2}} = - \infty .\) Sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 6: Một vài quy tắc tìm giới hạn vô cực
|
Xét tính liên tục của các hàm số sau tại điểm cho trước:
Tìm các khoảng và nửa khoảng trên đó mỗi hàm số sau đây liên tục: